UV light, coatings reduce bacterial adhesion up to 50 percent

August 23, 2004

The combination of ultraviolet (UV) light and certain coatings can lower -- by 15 to 50 percent -- the ability of some types of bacteria to stick to a glass surface and cause contamination or biofouling, Penn State environmental engineers have found.

Dr. Baikun Li, assistant professor of environmental engineering, Penn State Harrisburg, says "Ultraviolet light has been used for many years as an environmentally friendly route to water disinfection. However, these new results indicate that ultraviolet light, combined with certain coatings, also may offer a 'green' approach to keeping glass surfaces free of contamination."

Li described her results in a paper, "The Impact of Ultraviolet Light on Bacterial Adhesion to Glass and Metal-Oxide Coated Surfaces," at the American Chemical Society meeting, Sunday, Aug. 22, in Philadelphia. Her co-author is Dr. Bruce Logan, the Kappe professor of environmental engineering, Penn State's University Park campus.

The Penn State researcher exposed flat glass surfaces (silica dioxide) coated with thin layers of silicon dioxide, titanium dioxide or tin dioxide to eight different strains of bacteria, including some disease-causing types, and two different wavelengths of UV light. Measurements showed that the lower wavelength UVC light (254 nm) lowered cell adhesion by 15 to 50 percent, depending on the type of bacteria, on both the titanium dioxide and tin dioxide coated surfaces. The higher wavelength UVA light (340nm) produced similar effects for glass coated with titanium dioxide but not with tin dioxide. Higher intensity light reduced adhesion more than lower intensity UV light.

Li says, "Our work is among the first studies of the combination of ultraviolet light and coatings to prevent biofouling. These early results are promising and suggest potential for further study and anti-biofouling application."
-end-
The project was supported by PPG Industries and the National Science Foundation.

Penn State

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.