Ether returns to oust dark matter

August 23, 2006

From his office window, Glenn Starkman can see the site where Albert Michelson and Edward Morley carried out their famous 1887 experiment that ruled out the presence of an all-pervading "aether" in space, setting the stage for Einstein's special theory of relativity. So it seems ironic that Starkman, who is at Case Western Reserve University in Cleveland, Ohio, is now proposing a theory that would bring ether back into the reckoning. While this would defy Einstein, Starkman's ether would do away with the need for dark matter.

Nineteenth-century physicists believed that just as sound waves move through air, light waves must move through an all-pervading physical substance, which they called luminiferous ("light-bearing") ether. However, the Michelson-Morley experiment failed to find any signs of ether, and 18 years after that, Einstein's special relativity argued that light propagates through a vacuum. The idea of ether was abandoned - but not discarded altogether, it seems.

Starkman and colleagues Tom Zlosnik and Pedro Ferreira of the University of Oxford are now reincarnating the ether in a new form to solve the puzzle of dark matter, the mysterious substance that was proposed to explain why galaxies seem to contain much more mass than can be accounted for by visible matter. They posit an ether that is a field, rather than a substance, and which pervades space-time. "If you removed everything else in the universe, the ether would still be there," says Zlosnik. This ether field isn't to do with light, but rather is something that boosts the gravitational pull of stars and galaxies, making them seem heavier, says Starkman. It does this by increasing the flexibility of space-time itself . "We usually imagine space-time as a rubber sheet that's warped by a massive object," says Starkman. "The ether makes that rubber sheet more bendable in parts, so matter can seem to have a much bigger gravitational effect than you would expect from its weight." The team's calculations show that this ether-induced gravity boost would explain the observed high velocities of stars in galaxies, currently attributed to the presence of dark matter.

This is not the first time that physicists have suggested modifying gravity to do away with this unseen dark matter. The idea was originally proposed by Mordehai Milgrom while at Princeton University in the 1980s. He suggested that the inverse-square law of gravity only applies where the acceleration caused by the field is above a certain threshold, say a0. Below that value, the field dissipates more slowly, explaining the observed extra gravity. "It wasn't really a theory, it was a guess," says cosmologist Sean Carroll at the University of Chicago in Illinois.

Then in 2004 this idea of modified Newtonian dynamics (MOND) was reconciled with general relativity by Jacob Bekenstein at the Hebrew University in Jerusalem, Israel (New Scientist, 22 January 2005, p 10), making MOND a genuine contender in the eyes of some physicists. Bekenstein's work was brilliant, but fiendishly complicated, using many different and arbitrary fields and parameters," says Ferreira. "We felt that something so complicated couldn't be the final theory.

Now Starkman's team has reproduced Bekenstein's results using just one field - the new ether ( 0607411). Even more tantalisingly, the calculations reveal a close relationship between the threshold acceleration a0 - which depends on the ether - and the rate at which the universe's expansion is accelerating. Astronomers have attributed this acceleration to something called dark energy, so in a sense the ether is related to this entity. That they have found this connection is a truly profound thing, says Bekenstein. The team is now investigating how the ether might cause the universe's expansion to speed up.

Andreas Albrecht, a cosmologist at the University of Calfornia, Davis, believes that this ether model is worth investigating further. "We've hit some really profound problems with cosmology Ð with dark matter and dark energy," he says. "That tells us we have to rethink fundamental physics and try something new."

Both Bekenstein and Albrecht say Starkman's team must now carefully check whether the ether theory fits with the motions of planets within our solar system, which are known to a high degree of accuracy, and also explain what exactly this ether is. Ferreira agrees: "The onus is definitely on us to pin this theory down so it doesn't look like yet another fantastical explanation," he says.

However, physicists may be reluctant to resurrect any kind of ether because it contradicts special relativity by forming an absolute frame of reference . "Interestingly, this controversial aspect should make it easy to test for experimentally," says Carroll.
"This article is posted on this site to give advance access to other authorised media who may wish to quote extracts as part of fair dealing with this copyrighted material. Full attribution is required, and if reporting online a link to is also required. This story posted here is the EXACT text used in New Scientist magazine, therefore advance permission is required before any and every reproduction of each article in full. Please contact Please note that all material is copyright of Reed Business Information Limited and we reserve the right to take such action as we consider appropriate to protect such copyright."


Author: Zeeya Merali


UK CONTACT - Claire Bowles, New Scientist Press Office, London:

Tel: 44-0-20-7611-1210 or email

US CONTACT - New Scientist Boston office:

Tel: 617-386-2190 or email

New Scientist

Related Dark Matter Articles from Brightsurf:

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms.

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Dark Matter News and Dark Matter Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to