Nav: Home

Nanofur for oil spill cleanup

August 23, 2016

Some water ferns can absorb large volumes of oil within a short time, because their leaves are strongly water-repellent and, at the same time, highly oil-absorbing. Researchers of KIT, together with colleagues of Bonn University, have found that the oil-binding capacity of the water plant results from the hairy microstructure of its leaves. It is now used as a model to further develop the new Nanofur material for the environmentally friendly cleanup of oil spills. (DOI: 10.1088/1748-3190/11/5/056003)

Damaged pipelines, oil tanker disasters, and accidents on oil drilling and production platforms may result in pollutions of water with crude or mineral oil. Conventional methods to clean up the oil spill are associated with specific drawbacks. Oil combustion or the use of chemical substances to accelerate oil decomposition cause secondary environmental pollution. Many natural materials to take up the oil, such as sawdust or plant fibers, are hardly effective, because they also absorb large amounts of water. On their search for an environmentally friendly alternative to clean up oil spills, the researchers compared various species of aquatic ferns. "We already knew that the leaves of these plants repel water, but for the first time now, we have studied their capacity to absorb oil," Claudia Zeiger says. She conducted the project at KIT's Institute of Microstructure Technology.

Aquatic ferns originally growing in tropical and subtropical regions can now also be found in parts of Europe. As they reproduce strongly, they are often considered weed. However, they have a considerable potential as low-cost, rapid, and environmentally friendly oil absorbers, which is obvious from a short video at http://www.kit.edu/kit/english/pi_2016_115_nanofur-for-oil-spill-cleanup.php. "The plants might be used in lakes to absorb accidental oil spills," Zeiger says. After less than 30 seconds, the leaves reach maximum absorption and can be skimmed off together with the absorbed oil. The water plant named salvinia has trichomes on the leaf surface -- hairy extensions of 0.3 to 2.5 mm in length. Comparison of different salvinia species revealed that leaves with the longest hairs did not absorb the largest amounts of oil. "Oil-absorbing capacity is determined by the shape of the hair ends," Zeiger emphasizes. The largest quantity of oil was absorbed by leaves of the water fern salvinia molesta, whose hair ends are shaped like an eggbeater.

Based on this new knowledge on the relationship between surface structure of leaves and their oil-absorbing capacity, the researchers improved the 'Nanofur' material developed at their institute. This plastic nanofur mimics the water-repellent and oil-absorbing effect of salvinia to separate oil and water. "We study nanostructures and microstructures in nature for potential technical developments," says Hendrik Hölscher, Head of the Biomimetic Surfaces Group of the Institute of Microstructure Technology of KIT. He points out that different properties of plants made of the same material frequently result from differences of their finest structures.
-end-
Claudia Zeiger as the first author presents the study results in the journal Bioinspiration & Biomimetics under the heading of "Microstructures of superhydrophobic plant leaves -- inspiration for efficient oil spill cleanup materials." This study was carried out in cooperation with scientists of the Nees Institute for Biodiversity of Plants of Bonn University, which was established by bionics pioneer Wilhelm Barthlott. Research was supported by a Ph.D. grant of Carl Zeiss Foundation, the Brazilian research and exchange program Ciências sem Fronteiras, and the Karlsruhe Nano Micro Facility (KNMF) high-tech platform of KIT.

Claudia Zeiger, Isabelle C Rodrigues da Silva, Matthias Mail, Maryna N Kavalenka, Wilhelm Barthlott, and Hendrik Hölscher: Microstructures of superhydrophobic plant leaves - inspiration for efficient oil spill cleanup materials. Bioinspiration & Biomimetics. DOI: 10.1088/1748-3190/11/5/056003

Click here for the online publication: http://iopscience.iop.org/article/10.1088/1748-3190/11/5/056003

More information on Nanofur:

http://kit-neuland.de/2013/nanopelz (in German only)

https://www.imt.kit.edu/1436.php

For further information, please contact: Kosta Schinarakis, PKM - Science Scout, Phone: 49-721-608-41956, Fax: 49-721-608-43658, E-mail: schinarakis@kit.edu

Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

KIT - The Research University in the Helmholtz Association

Since 2010, the KIT has been certified as a family-friendly university.

This press release is available on the internet at http://www.kit.edu.

Karlsruher Institut für Technologie (KIT)

Related Oil Spill Articles:

Oil spill: where and when will it reach the beach? Answers to prevent environmental impacts
When an accident involving oil spills occurs, forecasting the behaviour of the oil slick and understanding in advance where and when it will reach the coastline is crucial to organize an efficient emergency response that is able to limit environmental and economic repercussions.
Chemical herders could impact oil spill cleanup
Oil spills in the ocean can cause devastation to wildlife, so effective cleanup is a top priority.
Study shows continuing impacts of Deepwater Horizon oil spill
Nine years ago tomorrow -- April 20, 2010 -- crude oil began leaking from the Deepwater Horizon drilling rig into the Gulf of Mexico in what turned out to be the largest marine oil spill in history.
New report examines the safety of using dispersants in oil spill clean ups
A multi-disciplinary team of scientists has issued a series of findings and recommendations on the safety of using dispersal agents in oil spill clean-up efforts in a report published this month by the National Academies of Science, Engineering, and Medicine.
What plants can teach us about oil spill clean-up, microfluidics
For years, scientists have been inspired by nature to innovate solutions to tricky problems, even oil spills -- manmade disasters with devastating environmental and economic consequences.
Top oil spill expert available to discuss new oil spill dispersant research
Internationally recognized oil spill expert, Nancy Kinner, a professor of civil and environmental engineering at the University of New Hampshire is available to discuss new post-Deepwater Horizon (DWH) dispersant research and its use in future oil spill responses.
Gulf spill oil dispersants associated with health symptoms in cleanup workers
Workers who were likely exposed to dispersants while cleaning up the 2010 Deepwater Horizon oil spill experienced a range of health symptoms including cough and wheeze, and skin and eye irritation, according to scientists at the National Institutes of Health (NIH).
New view of dispersants used after Deepwater Horizon oil spill
New research has uncovered an added dimension to the decision to inject large amounts of chemical dispersants above the crippled seafloor oil well during the Deepwater Horizon disaster in 2010.
Oil spill impacts in coastal wetland
Deepwater Horizon is still affecting wetland plants.
Oil spill impacts may perturb entire food webs
Oil spills not only have a direct impact on species and habitats, but may also set off a cascade of perturbations that affect the entire food web.
More Oil Spill News and Oil Spill Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.