Nav: Home

New approach to determining how atoms are arranged in materials

August 23, 2016

Researchers from North Carolina State University, the National Institute of Standards and Technology (NIST) and Oak Ridge National Laboratory (ORNL) have developed a novel approach to materials characterization, using Bayesian statistical methods to glean new insights into the structure of materials. The work should inform the development of new materials for use in a variety of applications.

"We want to understand the crystallographic structure of materials -- such as where atoms are located in the matrix of a material -- so that we have a basis for understanding how that structure affects a material's performance," says Jacob Jones, a professor of materials science and engineering at NC State and co-author of a paper on the work. "This is a fundamentally new advance that will help us develop new materials that can be used in everything from electronics and manufacturing to vehicles and nanotechnologies."

The first step in understanding a material's crystallographic structure is bombarding a sample of the material with electrons, photons or other subatomic particles, using technology such as the Spallation Neutron Source at ORNL or the Advanced Photon Source at Argonne National Laboratory. Researchers can then measure the angle and energy of these particles as they are scattered by the material.

Then things get really tricky.

Traditionally, the data from these scattering experiments has been analyzed using "least squares fitting" statistical techniques to infer a material's crystallographic structure. But these techniques are limited; they can tell researchers what a material's structure is likely to be -- but they don't fully describe the variability or uncertainty within the material's structure, because they don't describe the answers using probabilities.

"Least squares is a straightforward technique, but it doesn't allow us to describe the inferred crystallographic structure in a way that answers the questions that the materials scientists want to ask," says Alyson Wilson, a professor of statistics at NC State and co-author of the paper. "But we do have other techniques that can help address this challenge, and that's what we've done with this research."

In reality, the space between atoms isn't constant -- it's not fixed throughout a sample. And the same is true for every aspect of a material's structure.

"Understanding that variability, now possible with this new approach, allows us to characterize materials in a new, richer way," Jones says.

This is where Bayesian statistics comes into play.

"For example, atoms vibrate," Wilson says. "And the extent of the vibration is controlled by their temperature. Researchers want to know how those vibrations are influenced by temperature for any given material. And Bayesian tools can give us probabilities of these thermal displacements in a material."

"This approach will allow us to analyze data from a wide variety of materials characterization techniques -- all forms of spectroscopy, mass spectrometry, you name it -- and more fully characterize all kinds of matter," Jones says.

"Honestly, it's very exciting," adds Jones, who is also the director of NC State's Analytical Instrumentation Facility, which houses many of these types of instruments.

"We also plan to use these techniques to combine data from different types of experiments, in order to offer even more insights into material structure," Wilson says.
-end-
The paper, "Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis," is published in the Nature journal Scientific Reports. Lead authors of the paper are Chris Fancher, who is a postdoctoral researcher at NC State, and Zhen Han, a former Ph.D. student at NC State. Co-authors include Igor Levin of NIST; Katharine Page of ORNL; Brian Reich, an associate professor of statistics at NC State; and Ralph Smith, a Distinguished Professor of Mathematics at NC State. The work was done with support from the Kenan Institute for Engineering, Technology and Science at NC State, the Eastman Chemical Company-University Engagement Fund at NC State, the National Science Foundation under grant DMR-1445926, and the U.S. Department of Energy's Office of Science under contract number DE-AC02-06CH11357.

North Carolina State University

Related Atoms Articles:

2000 atoms in two places at once
The quantum superposition principle has been tested on a scale as never before in a new study by scientists at the University of Vienna.
Single atoms as catalysts
Only the outermost layer of a catalyst can play a role in chemical reactions.
How do atoms vibrate in graphene nanostructures?
Researchers from the University of Vienna, the Advanced Institute of Science and Technology in Japan, the company JEOL and La Sapienza University in Rome have developed a method capable to measure all phonons existing in a nanostructured material.
Targeting individual atoms
In recent decades, NMR spectroscopy has made it possible to capture the spatial structure of chemical and biochemical molecules.
Manipulating atoms one at a time with an electron beam
Researchers at MIT and elsewhere have found a way to manipulate the positions of individual atoms on a graphene sheet, which could be a first step to new quantum computing and sensing devices.
What atoms do when liquids and gases meet
From the crest of a wave in the sea to the surface of a glass of water, there are always small fluctuations in density at the point where the air comes in contact with a liquid.
Manipulating single atoms with an electron beam
All matter is composed of atoms, which are too small to see without powerful modern instruments including electron microscopes.
Discovery for grouping atoms invokes Pasteur
Scientists have found a new way of joining groups of atoms together into shape-changing molecules -- opening up the possibility of a new area of chemistry and the development of countless new drugs, microelectronics and materials.
Entangled atoms shine in unison
A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission.
Individual impurity atoms detectable in graphene
A team including physicists from the University of Basel has succeeded in using atomic force microscopy to clearly obtain images of individual impurity atoms in graphene ribbons.
More Atoms News and Atoms Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.