Nav: Home

New technology may give electric car drivers more miles per minute of charging

August 23, 2016

Researchers have designed a thin plastic membrane that stops rechargeable batteries from discharging when not in use and allows for rapid recharging.

The patent-pending technology controls how charge flows inside a battery, and was inspired by how living cell membranes transport proteins in the body. It could find applications in high powered "supercapacitors" for electric cars and even help prevent the kinds of fires that plagued some models of hoverboards recently.

In the journal Energy & Environmental Science, the Ohio State University engineers describe the "smart" membrane that they hope will enable the development of a new category of fast-charging and powerful batteries called "redox transistor batteries" for automobiles that will travel farther on a single charge.

Along the way, they analyzed the performance of the leading hybrid and electric car batteries, and discovered something that, to their knowledge, has never before been stated outright. The best eco-car makers appear to have hit a performance limit, and that limit is 0.4 miles -- less than half a mile of driving -- per minute of charging.

Put another way, today's very best eco-friendly cars can travel around 200 miles after an 8-hour charge, while gas-powered cars can cover the same distance after only one minute spent at the pump. The researchers hope their new technology can boost electric car batteries to provide up to tens of miles per minute of charge.

"That's still an order of magnitude away from the equivalent measure in gasoline, but it's a place to start," said Vishnu-Baba Sundaresan, an assistant professor of mechanical and aerospace engineering at Ohio State and leader of the study.

Sundaresan said that today's hybrid and electric cars are hitting the performance limit because of how charge is stored in conventional batteries. He also believes that his new membrane technology might be the only way to push past that limit until entirely a new category of battery electrodes are developed.

"Research over the last 50-plus years has focused on advancing the chemistry of battery electrodes to increase capacity," Sundaresan said. "We've done that, but the increase in capacity has come at the cost of robustness and the ability to rapidly charge and discharge batteries. Electric vehicle design is mature enough now that we know the limit they're reaching is because of the chemistry of lithium-ion batteries."

Sundaresan and doctoral student Travis Hery call their invention an "ionic redox transistor," and they're using it to develop a new kind of battery in which energy is stored in a liquid electrolyte--which people can recharge or empty out and refill as they would refill a gas tank.

"For everyday commuting, the electrolyte can be simply regenerated by plugging it into a power outlet overnight or while parked at the garage. For long road trips, you could empty out the used electrolyte and refill the battery to get the kind of long driving range we are accustomed to with internal combustion engines," Sundaresan said.

"We believe that this flexibility presents a convincing case for weaning our dependence on internal combustion engines for transportation."

Batteries such as lithium-ion batteries already have membrane separators that conduct charge and physically separate the anode and the cathode from each other, but even the best of these batteries lose charge over time. That's because membranes can't completely prevent charge from leaking between the anode and cathode, explained doctoral student Travis Hery. The internal chemical reactions are called self-discharge.

In the best-case scenario, self-discharge slowly converts some of the battery's internal energy into heat--a gradual power drain. In the worst-case scenario, the leakage causes batteries to overheat and even catch fire, as recently happened with the popular lithium-ion-powered hoverboards and Boeing's environmentally friendly Dreamliner fleet.

The phenomenon is called thermal runaway, and there are very few ways to shut it down once it starts. But Sundaresan and Hery believe their membrane, when used with a specially designed electronic control unit, can shut down charge transport and prevent thermal runaway at its onset.

The design is inspired by cell membranes in the body, which open and close to let cells perform biological functions. Openings in the cell wall respond to the electrical charge of molecules to expand or contract, and it's this principle that the engineers applied to the smart membrane.

They combined an electrically conductive polymer with a polycarbonate filter used for air and water testing. By controlling how they grew the conductive polymer chains on the polycarbonate surface, the researchers found they could control the density of openings in the resulting membrane.

When the battery is charging or discharging, the conductive polymer shrinks to open the holes. When the battery isn't in use, the polymer swells to close the holes.

In laboratory tests, the engineers found that their membrane reliably controlled charging and discharging in batteries powered by ions of lithium, sodium and potassium. They connected batteries to an LED light, programming the holes to open and close in precise patterns. The membrane allowed the batteries to function normally, but reduced charge loss to zero when the batteries were not in use.

The university will license the technology to industry for further development.

The same technology could prevent self-discharge in supercapacitors, which give high power and rapid recharge capability to some electric cars, buses and light rail transit systems.

While the researchers have proven that the membrane works with conventional batteries, what Sundaresan and Hery most want to do is use it as the basis of a new type of battery. They are working to combine a so-called redox flow battery, in which an electrolyte is pumped from the anode to the cathode to generate power, with their smart membrane to create the so-called "redox transistor battery."
-end-
This research was funded by the National Science foundation.

Contact:

Vishnu-Baba Sundaresan
614-247-6367
Sundaresan.19@osu.edu

Ohio State University

Related Batteries Articles:

A seaweed derivative could be just what lithium-sulfur batteries need
Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications.
Batteries from scrap metal
Chinese scientists have made good use of waste while finding an innovative solution to a technical problem by transforming rusty stainless steel mesh into electrodes with outstanding electrochemical properties that make them ideal for potassium-ion batteries.
Better cathode materials for lithium-sulphur-batteries
A team at the Helmholtz-Zentrum Berlin (HZB) has for the first time fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) that is characterized by an extremely large surface area, and tested it as a cathode material in lithium-sulphur batteries.
Bright future for self-charging batteries
Who hasn't lived through the frustrating experience of being without a phone after forgetting to recharge it?
Making batteries from waste glass bottles
Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries.
Batteries -- quick coatings
Scientists at Oak Ridge National Laboratory are using the precision of an electron beam to instantly adhere cathode coatings for lithium-ion batteries -- a leap in efficiency that saves energy, reduces production and capital costs, and eliminates the use of toxic solvents.
Lighter, more efficient, safer lithium-ion batteries
Researchers from Universidad Carlos III de Madrid and the Council for Scientific Research (initialed CSIC in Spanish) have patented a method for making new ceramic electrodes for lithium-ion batteries that are more efficient, cheaper, more resistant and safer than conventional batteries.
Clarifying how lithium ions ferry around in rechargeable batteries
IBS scientists observe the real-time ultrafast bonding of lithium ions with the solvents, in the same process that happens during charging and discharging of lithium batteries, and conclude that a new theory is needed.
A new approach to improving lithium-sulfur batteries
Researchers from the University of Delaware and China's Northwestern Polytechnical University, Shenzhen University and Hong Kong Polytechnic University have demonstrated a new polysulfide entrapping strategy that greatly improves the cycle stability of Li-S batteries.
Looking for the next leap in rechargeable batteries
USC researchers may have just found a solution for one of the biggest stumbling blocks to the next wave of rechargeable batteries -- small enough for cellphones and powerful enough for cars.

Related Batteries Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...