Nav: Home

New technology may give electric car drivers more miles per minute of charging

August 23, 2016

Researchers have designed a thin plastic membrane that stops rechargeable batteries from discharging when not in use and allows for rapid recharging.

The patent-pending technology controls how charge flows inside a battery, and was inspired by how living cell membranes transport proteins in the body. It could find applications in high powered "supercapacitors" for electric cars and even help prevent the kinds of fires that plagued some models of hoverboards recently.

In the journal Energy & Environmental Science, the Ohio State University engineers describe the "smart" membrane that they hope will enable the development of a new category of fast-charging and powerful batteries called "redox transistor batteries" for automobiles that will travel farther on a single charge.

Along the way, they analyzed the performance of the leading hybrid and electric car batteries, and discovered something that, to their knowledge, has never before been stated outright. The best eco-car makers appear to have hit a performance limit, and that limit is 0.4 miles -- less than half a mile of driving -- per minute of charging.

Put another way, today's very best eco-friendly cars can travel around 200 miles after an 8-hour charge, while gas-powered cars can cover the same distance after only one minute spent at the pump. The researchers hope their new technology can boost electric car batteries to provide up to tens of miles per minute of charge.

"That's still an order of magnitude away from the equivalent measure in gasoline, but it's a place to start," said Vishnu-Baba Sundaresan, an assistant professor of mechanical and aerospace engineering at Ohio State and leader of the study.

Sundaresan said that today's hybrid and electric cars are hitting the performance limit because of how charge is stored in conventional batteries. He also believes that his new membrane technology might be the only way to push past that limit until entirely a new category of battery electrodes are developed.

"Research over the last 50-plus years has focused on advancing the chemistry of battery electrodes to increase capacity," Sundaresan said. "We've done that, but the increase in capacity has come at the cost of robustness and the ability to rapidly charge and discharge batteries. Electric vehicle design is mature enough now that we know the limit they're reaching is because of the chemistry of lithium-ion batteries."

Sundaresan and doctoral student Travis Hery call their invention an "ionic redox transistor," and they're using it to develop a new kind of battery in which energy is stored in a liquid electrolyte--which people can recharge or empty out and refill as they would refill a gas tank.

"For everyday commuting, the electrolyte can be simply regenerated by plugging it into a power outlet overnight or while parked at the garage. For long road trips, you could empty out the used electrolyte and refill the battery to get the kind of long driving range we are accustomed to with internal combustion engines," Sundaresan said.

"We believe that this flexibility presents a convincing case for weaning our dependence on internal combustion engines for transportation."

Batteries such as lithium-ion batteries already have membrane separators that conduct charge and physically separate the anode and the cathode from each other, but even the best of these batteries lose charge over time. That's because membranes can't completely prevent charge from leaking between the anode and cathode, explained doctoral student Travis Hery. The internal chemical reactions are called self-discharge.

In the best-case scenario, self-discharge slowly converts some of the battery's internal energy into heat--a gradual power drain. In the worst-case scenario, the leakage causes batteries to overheat and even catch fire, as recently happened with the popular lithium-ion-powered hoverboards and Boeing's environmentally friendly Dreamliner fleet.

The phenomenon is called thermal runaway, and there are very few ways to shut it down once it starts. But Sundaresan and Hery believe their membrane, when used with a specially designed electronic control unit, can shut down charge transport and prevent thermal runaway at its onset.

The design is inspired by cell membranes in the body, which open and close to let cells perform biological functions. Openings in the cell wall respond to the electrical charge of molecules to expand or contract, and it's this principle that the engineers applied to the smart membrane.

They combined an electrically conductive polymer with a polycarbonate filter used for air and water testing. By controlling how they grew the conductive polymer chains on the polycarbonate surface, the researchers found they could control the density of openings in the resulting membrane.

When the battery is charging or discharging, the conductive polymer shrinks to open the holes. When the battery isn't in use, the polymer swells to close the holes.

In laboratory tests, the engineers found that their membrane reliably controlled charging and discharging in batteries powered by ions of lithium, sodium and potassium. They connected batteries to an LED light, programming the holes to open and close in precise patterns. The membrane allowed the batteries to function normally, but reduced charge loss to zero when the batteries were not in use.

The university will license the technology to industry for further development.

The same technology could prevent self-discharge in supercapacitors, which give high power and rapid recharge capability to some electric cars, buses and light rail transit systems.

While the researchers have proven that the membrane works with conventional batteries, what Sundaresan and Hery most want to do is use it as the basis of a new type of battery. They are working to combine a so-called redox flow battery, in which an electrolyte is pumped from the anode to the cathode to generate power, with their smart membrane to create the so-called "redox transistor battery."
-end-
This research was funded by the National Science foundation.

Contact:

Vishnu-Baba Sundaresan
614-247-6367
Sundaresan.19@osu.edu

Ohio State University

Related Batteries Articles:

New NiMH batteries perform better when made from recycled old NiMH batteries
A new method for recycling old batteries can provide better performing and cheaper rechargeable hydride batteries (NiMH) as shown in a new study by researchers at Stockholm University.
Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.
Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.
New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).
New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.
Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.
Will the future's super batteries be made of seawater?
The race is on to develop even more efficient and rechargable batteries for the future.
Less may be more in next-gen batteries
Rice University engineers build full lithium-ion batteries with silicon anodes and an alumina layer to protect cathodes from degrading.
Not so fast: Some batteries can be pushed too far
Fast charge and discharge of some lithium-ion batteries with intentional defects degrades their performance and endurance, according to Rice University engineers.
Interfacial chemistry improves rechargeability of Zn batteries
Prof. CUI Guanglei's group from the Qingdao Institute of Bioenergy and Bioprocess Technology of the Chinese Academy of Sciences has proposed new concepts concerning in situ formed and artificial SEIs as a means of fundamentally modulating the electrochemical characteristics of Zn.
More Batteries News and Batteries Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.