Nav: Home

Diet and back pain: What's the link?

August 23, 2016

Troy, N.Y. - Can a diet high in processed fat and sugar and Type 2 diabetes cause degeneration of intervertebral discs in the spine? If so, what is happening, and can it be prevented? As part of an ongoing collaboration between Rensselaer Polytechnic Institute and the Icahn School of Medicine at Mount Sinai - a partnership that draws upon the expertise of both schools to address significant health problems - researchers hope to answer those questions by investigating the link between diet, obesity-linked Type 2 diabetes, and intervertebral disc degeneration.

Researchers on the project suspect the diet associated with Type 2 diabetes - one high in processed fats and sugars - causes inflammation and modification of disc tissue, triggering a chain of responses, which leads to degeneration. To test this hypothesis, the researchers have set three goals: to establish whether mice fed a diet associated with Type 2 diabetes will develop intervertebral disc degeneration (IDD), isolate the effect of diet causing changes in the tissue, and evaluate how the diet modifies proteins within the disc.

The project is supported by a $3.3 million grant from the National Institutes of Health and is led by Dr. James Iatridis, a professor and vice chair for research in the orthopaedics department at the Icahn School of Medicine.

"Back pain caused by spinal disc degeneration is the number one cause of global disability, so it's a hugely important problem that needs to be addressed," said Dr. Iatridis, who has long specialized in spinal disc degeneration.

Deepak Vashishth, a professor of biomedical engineering and the Rensselaer lead on the project, said the partnership makes it possible to tackle a project of this complexity.

"We're trying to establish the mechanism whereby this diet, and Type 2 diabetes, leads to disc degeneration, and that's not an easy thing to do because, within the body, various processes are linked and feedback loops are difficult to unravel," said Vashishth, who is also the director of the Center for Biotechnology and Interdisciplinary Studies. "To investigate this question, you need the mix of experts from different disciplines with different skill sets that the partnership allows."

At the core of the research project are the effects of advanced glycation endproducts (AGE) - proteins or lipids that have become coated in sugars, which damage their function. Research suggests that a diet high in heat-processed foods, including fried foods, plays a role in AGE formation. Research also indicates the accumulation of AGEs causes structural deterioration, increases inflammation that could lead to disc degeneration, and contributes to a host of degenerative diseases such as diabetes, atherosclerosis, and Alzheimer's.

In the first part of the project, researchers at Mount Sinai will raise mice - both regular mice and so-called "knock-out" mice that have been genetically modified to reduce the ability of their cells to bind to AGEs - on a diet of foods high in AGEs, accelerating AGE accumulation in the mice, and observing whether the mice develop the various of health conditions associated with Type 2 diabetes, including disc degeneration. This part of the research helps establish the systemic effects of AGEs on the body.

To separate the systemic effects AGEs may have on the body from local effects in specific tissues, researchers will also look at spinal bone and disc tissue in vitro. In that research, bone and disc tissue from both normal and AGE "knock-out" mice fed on a regular diet will be bathed in a high AGE medium, accelerating the exposure of these specific tissues to AGEs. Selected tissue samples will be exposed to a drug that may be able to block AGEs in disc tissue, limiting exposure to bone and disc tissue. In all samples, the researchers will look at changes in indicators of disc and bone health such as the activity of proinflammatory cytokines and AGE formation over time. This research will separate the relative contribution of AGEs to tissue degeneration from systemic damage that may occur as a result of Type 2 diabetes-associated hyperglycemia.

At Rensselaer, researchers will analyze various mouse and human tissue samples, helping to determine how healthy disc tissue in humans and mice differ from the tissue of patients and mice that have developed disc degeneration, as well as mice that have been treated with a drug intended to block the effects of a diet high in AGEs diet on the spine.

In particular, researchers at Rensselaer will analyze proteins within the tissue samples, tracking the type and quantity of post-translational protein modifications - chemical changes on the surface of the protein that are not defined by DNA. Similarities between mice and patients affected by disc degeneration would support a link between diet and disc degeneration.

"We'll look for a qualitative and a quantitative match," Vashishth said. "So we'll want to know if we're seeing the same modifications in both the mice and humans that present with degenerated discs, how much modification there is based on the diet, and in cases where a drug was used for treatment or prevention, we'll see whether those modifications are reduced."

Vashishth, an expert in extracellular bone matrix, has a long-term interest in investigating AGE-accumulation in bone. With his expertise, the team will also look at how changes in bone could be contributing to the degeneration of discs. Vashishth said one aspect of the feedback loop may be causing bone tissue in the spinal vertebrae to stiffen, depriving disc tissue of nutrients that would normally diffuse through the bone to the discs.

At Rensselaer, this research fulfills the vision of The New Polytechnic, a paradigm for higher education which recognizes that global challenges and opportunities are so great they cannot be addressed by the most talented person working alone. Rensselaer serves as a crossroads for collaboration--working with partners across disciplines, sectors, and geographic regions--to address complex global challenges, using the most advanced tools and technologies, many of which are developed at Rensselaer. Research at Rensselaer addresses some of the world's most pressing technological challenges - from energy security and sustainable development to biotechnology and human health. The New Polytechnic is transformative in three fundamental ways: in the global impact of research, innovative pedagogy, and in the lives of students at Rensselaer.
-end-
About Rensselaer Polytechnic Institute

Rensselaer Polytechnic Institute, founded in 1824, is America's first technological research university. The university offers bachelor's, master's, and doctoral degrees in engineering; the sciences; information technology and web sciences; architecture; management; and the arts, humanities, and social sciences. Rensselaer faculty advance research in a wide range of fields, with an emphasis on biotechnology, nanotechnology, computational science and engineering, data science, and the media arts and technology. The Institute has an established record of success in the transfer of technology from the laboratory to the marketplace, fulfilling its founding mission of applying science "to the common purposes of life." For more information, please visit http://www.rpi.edu.

Contact

Mary Martialay
Rensselaer Polytechnic Institute
(518) 276-2146
(518) 951-5650 (mobile)
martim12@rpi.edu

Visit the Rensselaer research and discovery blog: http://approach.rpi.edu

Follow us on Twitter: http://www.twitter.com/RPInews

Rensselaer Polytechnic Institute

Related Diabetes Articles:

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).
Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.
People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.
Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.
New oral diabetes drug shows promise in phase 3 trial for patients with type 1 diabetes
A University of Colorado Anschutz Medical Campus study finds sotagliflozin helps control glucose and reduces the need for insulin in patients with type 1 diabetes.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
More Diabetes News and Diabetes Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab