Nav: Home

The demise of the Maya civilization: Water shortage can destroy cultures

August 23, 2016

Something really drastic must have happened to the Ancient Maya at the end of the Classic Period in the 9th century. Within a short period of time, this advanced civilisation in Central America went from flourishing to collapsing -- the population dwindling rapidly and monumental stone structures, like the ones built at Yucatán, were no longer being constructed. The reason for this demise remains the subject of debate even today. Model calculations by TU Wien may have found the explanation: the irrigation technology that served the Mayans well during periods of drought may have actually made their society more vulnerable to major catastrophes.

The lessons learnt may also help us to draw important conclusions for our own future. We need to be careful with our natural resources -- if technical measures simply deal with the shortage of resources on a superficial level and we do not adjust our own behaviour, society is left vulnerable.

Socio-hydrology

"Water influences society and society influences water," says Linda Kuil, one of Prof. Günter Blöschl's PhD students of the Vienna Doctoral Programme on Water Resource Systems, funded by the Austrian Science Fund, at TU Wien. "The water supply determines how much food is available, so in turn affects the growth of the population. Conversely, population increases may interfere with the natural water cycle through the construction of reservoirs, for example."

Since water and society have such a direct influence on each other, it will not suffice to describe them by separate models. This is why researchers at TU Wien explore the interactions between sociology and hydrology and represent them by coupled mathematical models. The emerging field of socio-hydrology establishes mathematical interrelationships, e.g., between food availability and birth rate, or between recent water shortages that are still fresh in our memories and society's plans for building water reservoirs. These kinds of interrelationships, combined with a large amount of historical and current data, ultimately yield a complex system that produces different scenarios of human-nature interactions.

The water reservoir: a blessing and a curse

"It's well-known that the Mayans built water reservoirs in preparation for dry spells," Linda Kuil says. "With our model, we can now analyse the effects of the Mayans' water engineering on their society. It is also possible to simulate scenarios with and without water reservoirs and compare the consequences of such decisions."

As it turns out, water reservoirs can actually provide substantial relief during short periods of drought. In the simulations without reservoirs the Mayan population declines after a drought, whereas it continues to grow if reservoirs provide extra water. However, the reservoirs may also make the population more vulnerable during prolonged dry spells. The water management behaviour may remain the same, and the water demand per person does not decrease, but the population continues to grow. This may then prove fatal if another drought occurs resulting in a decline in population that is more dramatic than without reservoirs.

Sustainable use of resources

We will probably never know all the reasons for the decline of the Mayans. After all, wars or epidemics may have played their part too. The socio-hydrological model developed by the Günter Blöschl-led team of researchers at TU Wien does, however, tell us that droughts and water issues are one possible explanation for their demise and shows us just how vulnerable an engineered society can be. "When it comes to scarce resources, the simplest solutions might turn out to be superficial and not always the best ones," Linda Kuil believes. "You have to change people's behaviour, reassess society's dependency on this resource and reduce consumption -- otherwise society may in fact be more vulnerable to catastrophes rather than safer, despite clever technical solutions."
-end-
Further information:

Prof. Günter Blöschl
Institute of Hydraulic Engineering and Water Resources Management
TU Wien
Karlsplatz 13, 1040 Wien
43-1-58801-22315
bloeschl@hydro.tuwien.ac.at

Linda Kuil, MSc
Centre for Water Resource Systems (CWRS)
TU Wien
Karlsplatz 13, 1040 Wien
T: 43-1-58801-406667
linda.kuil@tuwien.ac.at

Vienna University of Technology

Related Drought Articles:

Vinegar: A cheap and simple way to help plants fight drought
Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) have discovered a new, yet simple, way to increase drought tolerance in a wide range of plants.
Lending plants a hand to survive drought
A research team led by the Australian National University has found a new way to help plants better survive drought by enhancing their natural ability to preserve water.
New rice fights off drought
Scientists at the RIKEN Center for Sustainable Resource Science (CSRS) have developed strains of rice that are resistant to drought in real-world situations.
Drought linked with human health risks in US analysis
A Yale-led analysis of health claims in 22 US states found that severe drought conditions increased the risk of mortality -- and, in some cases, cardiovascular disease -- among adults 65 or over.
A basis for the application of drought indices in China
The definition of a drought index is the foundation of drought research.
Under the Dead Sea, warnings of dire drought
Nearly 1,000 feet below the bed of the Dead Sea, scientists have found evidence that during past warm periods, the Mideast has suffered drought on scales never recorded by humans -- a possible warning for current times.
Forests worldwide threatened by drought
Forests around the world are at risk of death due to widespread drought, University of Stirling researchers have found.
How much drought can a forest take?
Why do some trees die in a drought and others don't?
Pressures from grazers hastens ecosystem collapse from drought
Ecosystem collapse from extreme drought can be significantly hastened by pressures placed on drought-weakened vegetation by grazers and fungal pathogens, a new Duke-led study finds.
Molecular conductors help plants respond to drought
Salk scientists find key players in complex plant response to stress, offering clues to coping with drier conditions.

Related Drought Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...