Nav: Home

Biomimetic chemistry: Carbohydrate capture

August 23, 2018

LMU chemist Professor Ivan Huc, who heads a research group devoted to the study of Biomimetic Supramolecular Chemistry, has designed and synthesized a molecular structure which features a helical binding pocket that is made-to-measure for the recognition and capture of xylobiose, a member of the disaccharide class of carbohydrates to which sugar (sucrose) also belongs. The molecule's synthesis and characterization are described in the new issue of Angewandte Chemie. The editors have rated the work as a 'very important paper', a distinction which is accorded to less than 5% of all reports published in the journal.

Huc's research is aptly characterized by the term 'biomimetic'. He seeks inspiration for the synthesis of chemicals with specialized binding properties in the principles that underlie the organization of biopolymers. Biopolymers, such as proteins, nucleic acids and polysaccharides, typically contain several different kinds of subunits, whose sequence and spatial disposition determine their structural and functional characteristics. Huc's creations - which he calls foldamers - are similarly based on a small set of synthetic subunits, which can be readily modified for specific purposes. The subunits largely consist of rigid and planar aromatic rings, and are assembled, rather like Lego bricks, into linear polymers whose helical shape is reminiscent of that of the helices found in DNA and proteins. The goal of the new study, which was carried out in collaboration with colleagues at Bordeaux University (where Huc was based before moving to LMU in 2017), was to use this approach to design a foldamer that is capable of selective saccharide binding in organic solvents.

The sugar-binding properties of the resulting foldamer, which consists of 18 subunits of seven different types, were tested by incubation with several disaccharides, and the molecule was found to bind detectably only to xylobiose. Analysis of the crystal structure of the complex confirmed that the helical foldamer fully encapsulates the disaccharide within its internal cavity. Moreover, the bound disaccharide adopts an unusual conformation with its hydroxyls in the axial position, such that the two sugar rings are stacked one above the other. Binding is due to the formation of a network of hydrogen bonds between the sugars and functional groups that project from the inner wall of helical foldamer. Indeed, several of these bonds are mediated by water molecules within the cavity itself. This reflects the fact that the receptor was purposely designed to provide more than enough room for its guest molecule. And it testifies to the precision with which Huc's concept of molecular design "from first principles" can be implemented in practice. "We succeeded in constructing a selective receptor only with the knowledge of the basic principles that rule folding and molecular recognition properties of these compounds", says Ivan Huc. The next steps include to extend saccharide recognition to an aqueous medium, and to transform such helical receptors into sensors, for example using fluorescence, for saccharide quantitation and imaging in living systems.
-end-
Publication:

Subrata Saha, Brice Kauffmann, Yann Ferrand, Ivan Huc:
Selective Encapsulation of Disaccharide Xylobiose by an Aromatic Foldamer Helical Capsule
Angewandte Chemie 2018
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201808370

Contact:

Professor Ivan Huc
Chemical Biology for Drug Research
Faculty of Chemistry and Pharmacy
LMU Munich
Phone: +49 (0) 89/2180- 77804
Email: ivan.huc@cup.lmu.de

Ludwig-Maximilians-Universität München

Related Crystal Structure Articles:

The makings of a crystal flipper
Hokkaido University scientists have fabricated a crystal that autonomously flips back and forth while changing its flipping patterns in response to lighting conditions.
Crystal power
Scientists at the US Department of Energy's Argonne National Laboratory have created and tested a single-crystal electrode that promises to yield pivotal discoveries for advanced batteries under development worldwide.
Pressing 'pause' on nature's crystal symmetry
From snowflakes to quartz, nature's crystalline structures form with a reliable, systemic symmetry.
Superhard candy -- scientists cracked the complex crystal structure of molybdenum borides
In their search for new superhard compounds, researchers carried out a prediction of stable molybdenum borides and their crystal structures.
Machine learning technique speeds up crystal structure determination
A computer-based method could make it less labor-intensive to determine the crystal structures of various materials and molecules, including alloys, proteins and pharmaceuticals.
An improved method for protein crystal structure visualization
During crystallization atoms are arranged in a 3D lattice structured in a specific way.
Gazing into crystal balls to advance understanding of crystal formation
Researchers at The University of Tokyo Institute of Industrial Science conducted simulations considering and neglecting hydrodynamic interactions to determine whether or not these interactions cause the large discrepancy observed between experimental and calculated nucleation rates for hard-sphere colloidal systems, which are used to model crystallization.
4D imaging with liquid crystal microlenses
Most images captured by a camera lens are flat and two dimensional.
Solution of the high-resolution crystal structure of stress proteins from Staphylococcus
One of the main factors favoring a microorganism's survival in extreme conditions is preserving ribosomes -- a macromolecular complex comprising RNA and proteins
A laser, a crystal and molecular structures
Researchers have built a new tool to study molecules using a laser, a crystal and light detectors.
More Crystal Structure News and Crystal Structure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.