Nav: Home

Traumatic brain injury recovery via petri dish

August 23, 2018

Athens, Ga. - Researchers in the University of Georgia's Regenerative Bioscience Center have succeeded in reproducing the effects of traumatic brain injury and stimulating recovery in neuron cells grown in a petri dish. This makes them the first known scientific team in the country to do so using stem cell-derived neurons. The procedure, detailed in a new paper in Nature Scientific Reports, has significant implications for the study and treatment of such injuries.

Unlike other cells in the body, most neurons in the central nervous system cannot repair or renew themselves. Using an agent called glutamate that is released in high amounts in the brain after traumatic injury, the research team recorded a concussion-like disruption of neural activity in a dish containing dozens of minute electrodes. Through these recordings, they then evaluated the activity and influenced recovery by electrical stimulation.

"Once the neurons reach a certain level of density in the dish, you begin to see what we call synchronous activity in a very timed manner," said lead author Lohitash Karumbaiah, assistant professor in University of Georgia's College of Agricultural and Environmental Sciences Department of Animal Dairy Science. "Knowing we could re-create synchronized, brain-like activity in a dish gave us the impetus to ask, 'What if we disrupt this rhythm, and how can we recover from something like that?' "

In 2015, the U.S. Food and Drug Administration approved the first deep-brain stimulation device--an electrical stimulation cap that patients wear continuously--for treatment of Parkinson's disease. Karumbaiah and his team hope that electrical stimulation could be a clinically translatable approach for recovery from traumatic brain injury, or TBI. The next step, he said, is to connect with external collaborators to tailor electrical stimulation approaches with biomaterials that can exploit neuroplasticity.

Such treatments could be highly beneficial, for example, to veterans. Many veterans suffer from TBIs incurred through shock waves from explosions, with no physical focal point of injury. "Drilling into the brain randomly to access tissue in such cases makes no sense," said Karumbaiah. "A wearable device that can administer fairly controlled levels of relevant electrical stimulation can help these patients."

One of Karumbaiah's co-authors is Maysam Ghovanloo, professor of electrical and computer engineering at the Georgia Institute of Technology. Ghovanloo has led development of the Tongue Drive System, which allows individuals with spinal cord injuries to control their wheelchair or digital devices by moving their tongue. He has also developed technologies for neural interfacing and implantable medical devices. Ghovanloo will put his expertise in medical instrumentation to work in developing devices for the team's pre-clinical studies.

"We have developed a unique approach for observing and guiding stimulatory patterns in the brain at multiple levels, all the way from individual neurons to the neural tissue, and eventually the entire brain," Ghovanloo said. "All while taking into account the animal behavior to opportunistically apply stimulation when they are most effective."

According to Karumbaiah and Ghovanloo, electrical stimulation devices, whether designed for implantation or wearable use, must be small and power-efficient. They believe their approach will be clinically practical because smart design and application of stimulatory regimens can significantly reduce power consumption. "

"Because we've been recording from these neurons for a long time, we know what the magnitude of the pulses or activities of these neurons are," said Charles-Francois Latchoumane, a postdoctoral researcher in Karumbaiah's lab. "Now we can mimic those routines by programming them externally and feeding it back into the brain."
-end-
Writer: Charlene Betourney, 706-542-4081, cbetourney@uga.edu

Contact: Lohitash Karumbaiah, 706-542-2017, lohitash@uga.edu

Note to editors: The following photo is available online

https://news.uga.edu/wp-content/uploads/2018/08/TBI.jpg

Cutline: Lohitash Karumbaiah (center) and members of his laboratory. (Credit: Justin Sharma)

This release is available online at https://news.uga.edu/traumatic-brain-injury-recovery-via-petri-dish/

University of Georgia

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.