Nav: Home

UCalgary researchers find a way to stop lung damage due to the body's immune response

August 23, 2019

University of Calgary researchers at the Cumming School of Medicine (CSM) led by Drs. Donna Senger, PhD, Paul Kubes, PhD, and Stephen Robbins, PhD have discovered a new way to stop harmful inflammation in the lungs due to sepsis and injury.

"This work demonstrates the power of collaboration in solving complex health issues to benefit patients," says Robbins, a professor in the departments of Oncology, and Biochemistry & Molecular Biology and Scientific Director of the CIHR Institute of Cancer Research. "The research involved teams from 10 laboratories, nine at UCalgary with investigators from the Arnie Charbonneau Cancer Institute and the Snyder Institute for Chronic Diseases."

One in 18 deaths in Canada is connected to sepsis. It occurs when the body is fighting off severe infection. The immune system goes into overdrive sending white blood cells to clear up the infection. The battle between your immune system and the infection leads to inflammation. A problem occurs when the white blood cells leave the blood stream and move into the tissue to clean up the inflammation. In some cases instead of cleaning up and moving on, they stay, and more white blood cells come in behind them. The accumulation causes damage to internal organs, like the lungs, and can lead to death.

Sepsis is not the only condition that leads to an unhealthy collection of white blood cells in the lungs. Inflammation caused by injury, and other diseases, can also create this harmful response. Acute lung injury is a leading cause of death in critical care in Canada.

The collaboration began about 15 years ago. It was a project based on a similar premise, with two distinct problems to solve. The researchers wanted to know what was causing some cells to bind in the lungs. Senger and Robbins are cancer biologists and were investigating how cancer metastasizes. They knew that some cancer cells target the lungs and somehow stay there and grow. Many people with cancerous tumours do not die from the primary tumour, but rather from where the cancer metastasizes. Meanwhile, Kubes, a specialist in inflammation was investigating why white blood cells collect in the lungs. In conditions like sepsis, victims often die from the body's response to the illness, not from sepsis itself.

Together they started screening for a molecule present in both processes. They targeted the lining of blood vessels in the lungs because they suspected a signal would be present that allows cancer cells and white blood cells to stop and collect there. That's exactly where they found a molecule present during inflammation that could bind with white blood cells and help the cells pass from the blood stream into the tissue. As long as those molecules are present, white blood cells continue to bind them.

Once the scientists understood how and why the white blood cells were entering the tissue, they went in search of an "off switch" to stop the molecule from binding with the white blood cell. The teams developed a drug-like molecule that when introduced into the blood stream prevents white blood cells from binding with the molecule.

"We discovered that by targeting this molecule we can stop the ill effects of sepsis, acute lung injury and death," says Kubes, the director of the Snyder Institute for Chronic Diseases at the CSM and professor in the Department of Physiology and Pharmacology. "It could have an impact on any inflammatory condition in which lung injury is a contributor to worsening a patient's condition."

With this knowledge, the researchers have found a similar process that occurs in the liver. They've now patented two drug-like molecules that can prevent lung and liver damage due to inflammation. While all of the research to date has been performed on mice, a phase I clinical trial is underway to begin human testing.

The researchers are also applying the findings to cancer metastasis in hopes this new understanding could lead to treatments to stop cancer cells from spreading in the body and targeting the liver and lungs.

"The molecule we discovered binds to both white blood cells and certain cancer cells," says Senger, a research associate professor in the Department of Oncology. "We've developed a way to stop the white blood cells from binding and moving into the tissue. Now, we're hoping to find a solution to prevent cancer cells from spreading to these organs."
-end-
The research findings are published in Cell.

This work is supported by the Canadian Cancer Society, the Canadian Institutes of Health Research (CIHR), and the Dr. Robert C. Westbury Endowment for Melanoma Research.

University of Calgary

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
More Science News and Science Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...