Chemical catalysts may neutralize groundwater contaminants

August 24, 2004

Everything from the manufacture of new materials to the creation of modern medications relies on chemicals known as metal-based catalysts. Catalysts pack a double punch: Even as they greatly increase the rate of chemical processes, they regenerate so they can be used again. Catalysts also can be designed to break or make powerful chemical bonds at one end of a molecule while leaving the other end to sit quietly inactive. For this reason, many chemists -- particularly, inorganic chemists who often study metals and their reactivity -- are on a continuing quest for new catalysts.

At The Johns Hopkins University, researchers have developed a new set of molecules that has the potential to catalyze a wide variety of chemical reactions, including -- but not limited to -- the cleanup of common but quite dangerous groundwater pollutants called organohalides. Scientists will announce their results in late August at the American Chemical Society's annual summer meeting, held this year in Philadelphia.

"Organohalides comprise a high percentage of the priority pollutants as registered by the EPA, so this is a pretty important advance," said David P. Goldberg, associate professor in the Department of Chemistry in the Krieger School of Arts and Sciences at Johns Hopkins. "In addition, our molecules have the potential to catalyze a number of other reactions important in the synthesis of specialty chemicals for industry."

In the biological world, enzymes are the catalysts which function inside cells, and many enzymes depend on metal held inside specially built organic molecules called porphyrins. Using these as a model, Goldberg's team synthesized a variation that changed the properties of the reactive metal in the center.

Called a "corrolazine," the new ring contains one less atom than other, better-studied porphyrins. These molecules are fascinating from a fundamental perspective, Goldberg said. The tiny change made in their structure imparts some very different properties than the same system found in nature, and may allow scientists to catalyze reactions in very different ways from their natural counterparts.

"By studying these natural mimics, we can learn a great deal about why nature - actually, evolution - made certain choices in the design and development of enzymes," Goldberg said.

Though some of the molecules being investigated by Goldberg's team are important synthetic precursors that can ultimately be used in making specialty chemicals and pharmaceuticals, other recent work in the group, spearheaded by graduate students Joseph Fox and David Capretto, has focused on how to use the new catalysts to render the groundwater pollutants called organohalides harmless by way of a simple chemical reaction.

"Organohalides can be transformed into safer compounds by breaking the bonds between the halogen and carbon atoms they contain," Goldberg said.

Goldberg's work, funded largely by the National Science Foundation, has been recognized by the Dreyfus Foundation, which awarded him one of nine Dreyfus Postdoctoral Fellowships in Environmental Chemistry given out this year nationwide. These prestigious awards are intended to fund the salary and expenses of an outstanding post-doctoral fellow for two years in the lab of the sponsor.

"Though this work represents a step forward, there is still an enormous amount of work to be done, including finding what metals work best under what conditions," Goldberg said.
-end-
THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
901 S. Bond Street, Suite 540
Baltimore, Maryland 21218-3843
Phone: 443-287-9960; Fax: 443-287-9920

MEDIA CONTACT: Lisa De Nike
443-287-9960
lde@jhu.edu

Johns Hopkins University

Related Enzymes Articles from Brightsurf:

Bacilli and their enzymes show prospects for several applications
This publication is devoted to the des­cription of different microbial enzymes with prospects for practical application.

Ancient enzymes can contribute to greener chemistry
A research team at Uppsala University has resurrected several billion-year-old enzymes and reprogrammed them to catalyse completely different chemical reactions than their modern versions can manage.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Cold-adapted enzymes can transform at room temperature
Enzymes from cold-loving organisms that live at low temperatures, close to the freezing point of water, display highly distinctive properties.

How enzymes build sugar trees
Researchers have used cryo-electron microscopy to elucidate for the first time the structure and function of a very small enzyme embedded in cell membranes.

Energized by enzymes -- nature's catalysts
Scientists at Pacific Northwest National Laboratory are using a custom virtual reality app to design an artificial enzyme that converts carbon dioxide to formate, a kind of fuel.

Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

While promoting diseases like cancer, these enzymes also cannibalize each other
In diseases like cancer, atherosclerosis, and sickle cell anemia, cathepsins promote their propagation.

Researchers finally grasp the work week of enzymes
Scientists have found a novel way of monitoring individual enzymes as they chomp through fat.

How oxygen destroys the core of important enzymes
Certain enzymes, such as hydrogen-producing hydrogenases, are unstable in the presence of oxygen.

Read More: Enzymes News and Enzymes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.