Researchers identify antibiotic protein that defends the intestine against microbial invaders

August 24, 2006

Aug. 25, 2006 -- Researchers at UT Southwestern Medical Center have identified a protein that is made in the intestinal lining and targets microbial invaders, offering novel insights into how the intestine fends off pathogens and maintains friendly relations with symbiotic microbes.

The study, published today in the journal Science, might lead to new medications aimed at helping patients with inflammatory bowel disease. The findings might also aid in understanding the effectiveness of probiotics - mixtures of beneficial bacteria that are added to food products - in boosting the immune system, said Dr. Lora Hooper, assistant professor of immunology and the paper's senior author.

Scientists have known for decades that microbial cells in the human gut outnumber the body's own cells by about 10 to 1. Humans offer a safe haven to these microbes because they help us to break down food that we can't digest by ourselves. But it hasn't been clear how we keep these microscopic gut dwellers from invading our tissues and causing infections.

To help answer this question, Dr. Hooper's research team used mice raised inside sterile plastic bubbles. Because they are never in contact with the outer, microbe-filled world, these mice do not have the bacteria that normally colonize the gut. By exposing these "germ-free" mice to different types of gut bacteria, the researchers were able to observe how the epithelial cells lining the intestine react to microbial invaders.

"We found that when the gut lining comes into contact with bacteria, it produces a protein that binds to sugars that are part of the bacterial outer surfaces," Dr. Hooper said. "Once bound, these proteins quickly destroy their bacterial targets. They're killer proteins with a sweet tooth."

The protein, called RegIIIgamma in mice and HIP/PAP in humans, belongs to a protein class called lectins, which bind to sugar molecules. These particular lectins' seek-and-destroy mission may help to create an "electric fence" that shields the intestinal surface from invading bacteria, Dr. Hooper said.

The findings of this study may offer researchers new clues about the causes of inflammatory bowel disease. Most healthy people have a friendly relationship with their gut microbes, but in patients with inflammatory bowel disease this tolerant relationship turns sour and the immune system mounts an attack on the gut's microbial inhabitants that can lead to painful ulcers and bloody diarrhea. What triggers this attack is not clear, but the fact that these patients have elevated HIP/PAP production suggests that they are coping with increased numbers of invading intestinal bacteria.

The study may also help scientists devise more effective treatments for intestinal infections. "We are now working to understand the mechanism by which the intestinal lining senses bacterial threats. What turns this protein antibiotic on?" Dr. Hooper asked. "We want to explore whether this is something we can stimulate artificially to stave off pathogenic infections."
-end-
Other contributors to the study, all from UT Southwestern's Center for Immunology, are co-lead authors Heather Cash, a former graduate student; and Cecilia Whitham, research assistant, and Cassie Behrendt, research associate.

The research was supported by grants from the National Institutes of Health, the Crohn's and Colitis Foundation of America, and a Burroughs Wellcome Career Award in the Biomedical Sciences.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Dr. Lora Hooper - http://www.utsouthwestern.edu/findfac/professional/0,2356,60931,00.html

UT Southwestern Medical Center

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.