Nav: Home

Green light: USU biochemists describe light-driven conversion of greenhouse gas to fuel

August 24, 2016

By way of a light-driven bacterium, Utah State University biochemists are a step closer to cleanly converting harmful carbon dioxide emissions from fossil fuel combustion into usable fuels. Using the phototropic bacterium Rhodopseudomonas palustris as a biocatalyst, the scientists generated methane from carbon dioxide in one enzymatic step.

"It's a baby step, but it's also a big step," says USU professor Lance Seefeldt. "Imagine the far-reaching benefits of large-scale capture of environmentally damaging byproducts from burning fossils fuels and converting them to alternative fuels using light, which is abundant and clean."

Seefeldt and USU doctoral students Derek Harris, Sudipta Shaw and Zhi-Yong Yang, along with colleagues Kathryn Fixen, Yanning Zheng and Caroline Harwood of the University of Washington, and Dennis Dean of Virginia Tech, published findings in the 22 August 2016, online Early Edition of the Proceedings of the National Academy of Sciences.

The team's work is supported by a grant awarded through the U.S. Department of Energy Office of Science's Energy Frontier Research Center program to the Center for Biological and Electron Transfer and Catalysis or "BETCy." Based at Montana State University, BETCy is a seven-institution collaboration, of which USU is a partner.

"To our knowledge, no other organism can achieve what this bacterium has done with a single enzyme," says Seefeldt, professor in USU's Department of Chemistry and Biochemistry and an American Association for the Advancement of Science Fellow.

"Reducing," or breaking apart, carbon dioxide molecules requires tremendous energy, he says, because carbon dioxide is very stable.

"Use of phototrophs opens a new world of possibilities," says Seefeldt, who received USU's D. Wynne Thorne Career Research Award in 2012. "These kinds of bacteria could be used to make not only fuel, but all kinds of materials we use in everyday life, without the use of environmentally harmful energy sources. The future of this research is incredible."
-end-


Utah State University

Related Bacterium Articles:

New study explains extraordinary resilience of deadly bacterium
Researchers at the University of Maryland have identified how the pathogenic bacterium Pseudomonas aeruginosa uses tension-activated membrane channels to stop itself from swelling up and bursting when it is suddenly exposed to water.
Tiny bacterium provides window into whole ecosystems
MIT research on Prochlorococcus, the most abundant life form in the oceans, shows the bacteria's metabolism evolved in a way that may have helped trigger the rise of other organisms, to form a more complex marine ecosystem with overall greater biomass.
Common bacterium may help control disease-bearing mosquitoes
Genes from a common bacterium can be harnessed to sterilize male insects, a tool that can potentially control populations of both disease-bearing mosquitoes and agricultural pests, researchers at Yale University and Vanderbilt University report in related studies published Feb.
Sponge bacterium found to encapsulate arsenic drawn from environment
A new Tel Aviv University study sheds light on a unique biological model of arsenic detoxification.
Bacterium lassoes its way from the mouth to the heart to cause disease
The human mouth can harbor more than 700 different species of bacteria.
Complex bacterium writes new evolutionary story
A University of Queensland-led international study has discovered a new type of bacterial structure which has previously only been seen in more complex cells.
Planctomycete bacterium's internal membranes contain nuclear pore-like structures
A planctomycete bacterium features structures embedded in its internal membranes which resemble eukaryotic nuclear pores, according to a study published Feb.
Bacterium named after UQ researcher
University of Queensland microbiologist Emeritus Professor John Fuerst has a new bacterial genus (a group of related organisms) named in his honor.
New point of attack against stomach bacterium Helicobacter pylori
There is a strong suspicion that Helicobacter pylori is linked to the development of stomach cancer.
New evidence shows how bacterium in undercooked chicken causes GBS
A Michigan State University research team is the first to show how a common bacterium found in improperly cooked chicken causes Guillain-Barre Syndrome, or GBS.

Related Bacterium Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...