Nav: Home

Ringing in ears keeps brain more at attention, less at rest, study finds

August 24, 2017

CHAMPAIGN, Ill. -- Tinnitus, a chronic ringing or buzzing in the ears, has eluded medical treatment and scientific understanding. A new study by University of Illinois researchers found that chronic tinnitus is associated with changes in certain networks in the brain, and furthermore, those changes cause the brain to stay more at attention and less at rest.

The finding provides patients with validation of their experiences and hope for future treatment options.

"Tinnitus is invisible. It cannot be measured by any device we have, the way we can measure diabetes or hypertension," said study leader Fatima Husain, a professor of speech and hearing science at the University of Illinois. "So you can have this constant sound in your head, but nobody else can hear it and they may not believe you. They may think it's all in your imagination. Medically, we can only manage some symptoms, not cure it, because we don't understand what's causing it."

One factor that has complicated tinnitus research is the variability in the patient population. There are a lot of variables -- for example, duration, cause, severity, concurrent hearing loss, age, type of sound, which ear and more -- which have led to inconsistent study results.

"We have been so swamped by variability that finding anything that is consistent, that gives us one objective metric for tinnitus, is very exciting," said Husain, who also is affiliated with the neuroscience program and the Beckman Institute for Advanced Science and Technology at Illinois.

Using functional MRI to look for patterns across brain function and structure, the new study found that tinnitus is, in fact, in the hearers' heads -- in a region of the brain called the precuneus, to be precise.

The precuneus is connected to two inversely related networks in the brain: the dorsal attention network, which is active when something holds a person's attention; and the default mode network, which are the "background" functions of the brain when the person is at rest and not thinking of anything in particular.

"When the default mode network is on, the dorsal attention network is off, and vice versa. We found that the precuneus in tinnitus patients seems to be playing a role in that relationship," said Sara Schmidt, a graduate student in the neuroscience program and the first author of the paper.

The researchers found that, in patients with chronic tinnitus, the precuneus is more connected to the dorsal attention network and less connected to the default mode network. Additionally, as severity of the tinnitus increased, so did the observed effects on the neural networks. The results were published in the journal NeuroImage: Clinical.

"For patients, this is validating. Here is something related to tinnitus which is objective and invariant," Husain said. "It also implies that tinnitus patients are not truly at rest, even when resting. This could explain why many report being tired more often. Additionally, their attention may be engaged more with their tinnitus than necessary, and that may lessen their attention to other things. If you have bothersome tinnitus, this may be why you have concentration issues."

However, patients with recent-onset tinnitus did not show the differences in precuneus connectivity. Their scans looked more like the control groups, which begs the question of when and how changes in brain connectivity begin and whether they can be prevented or lessened.

"We don't know what's going to happen to the recent-onset patients later, so the next step is to do a longitudinal study to follow people after developing tinnitus and see if we can spot when these types of changes with the precuneus start to happen," Schmidt said.

The researchers hope their findings generate new paths for future research, providing one invariant metric to look for and guidelines for patient groupings.

"Knowing that duration and severity are factors is important, and can help guide future study design. We can look at subgroups and see differences," Schmidt said.

Husain's group currently is conducting a study to look at tinnitus across military and civilian populations. More information, including how to participate, is available at http://www.acnlab.com.

-end-

Editor's notes: To reach Fatima Husain, call 217-333-7561; email husainf@illinois.edu. The paper "Connectivity of the precuneus to the default mode and dorsal attention networks: a possible invariant marker of long-term tinnitus" is available online.

University of Illinois at Urbana-Champaign

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.