Investigation of core-shell nanocatalyst AU@CDs for ammonia synthesis

August 24, 2020

In a paper published in NANO, a team of researchers from Xinjiang University, China have prepared Au@CDs photocatalyst with core-shell structure by combining coal-based carbon dots (CDs) with gold sol. With its high photocatalytic activity in the synthesis and visible-light photocatalytic N2/H2O to ammonia, this has far-reaching significance for the further development of coal resources to prepare high-performance materials.

Synthesis and visible-light photocatalytic N2/H2O to ammonia at atmospheric pressure and room temperature is considered to be the most ideal ammonia synthesis technology. However, fixing N2 to NH3 under mild conditions remains a major challenge.

In this study, coal-based carbon dots (CDs) were prepared by H2O2 oxidation method using cheap and ubiquitous coal as the carbon source. Then the gold sol was connected to CDs to obtain a core-shell structure photocatalyst Au@CDs by sodium borohydride (NaBH4) reduction method. While characterizing the material structure, the photocatalytic N2/H2O to ammonia performance of Au@CDs was investigated.

The results show that the prepared Au@CDs has higher photocatalytic activity for photocatalytic N2/H2O to ammonia, the yield of Au@CDs photocatalytic N2/H2O to ammonia about 3.5-fold higher than that of bare CDs. Using N2-TPD, UV-Visible, EPR, and electrochemical tests to study the photoelectric properties of the prepared photocatalysts. The photocatalyst Au@CDs prepared by CDs coated with precious metal Au not only improves the carrier performance of the catalyst under visible light but also inhibits the recombination of photocatalyst hole pair, promote the charge transfer ability, and make the photocatalyst and hold move smoothly to the photocatalyst surface. At the same time, it also improves the adsorption and dissociation ability of N2 on the catalyst surface, thus promoting the photocatalytic N2/H2P ammonia synthesis reaction.

This work will contribute to the better design of carbon nanoparticle-coated metal-type photocatalytic materials, which will be of far-reaching significance for the further development of coal resources to prepare high-performance materials. The Xinjiang University team is currently exploring the preparation of more suitable photocatalysts to improve photocatalytic nitrogen fixation for ammonia synthesis.

This work was grateful for the financial support of the National Natural Science Foundation of China (21862020)
-end-
Corresponding author for this study is Halidan Maimaiti (m15899160730@163.com). Additional co-authors of the paper are Ying-dan Cui,Halidan Maimaiti, Shi-Xin Wang,Bo Xu,Hai-zhen Zhang and Pei-shuai Zhai.

For more insight into the research described, readers are invited to access the paper on NANO.

IMAGE

Caption: Synthesis and visible-light photocatalytic N2/H2O to ammonia of Au@CDs core-shell nanocatalyst.

NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and publishes interesting review articles about recent hot issues.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 140 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com.

For more information, contact Tay Yu Shan at ystay@wspc.com.

World Scientific

Related Ammonia Articles from Brightsurf:

Graphdiyne based metal atomic catalyst for efficient ammonia synthesis
Researchers cleverly used the rich chemical bonds, highly conjugated large π bonds, super-large surface and pore structures of graphdiyne.

When methane-eating microbes eat ammonia instead
As a side effect of their metabolism, microorganisms living on methane can also convert ammonia.

Multiphase buffering by ammonia explains wide range of atmospheric aerosol acidity
Anthropogenic ammonia emissions and the water content matter more than dry particle composition for the acidity of atmospheric aerosols in populated regions.

Investigation of core-shell nanocatalyst AU@CDs for ammonia synthesis
In a paper published in NANO, a team of researchers from Xinjiang University, China have prepared Au@CDs photocatalyst with core-shell structure by combining coal-based carbon dots (CDs) with gold sol.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Filling the void in ammonia synthesis: The role of nitrogen vacancies in catalysts
Scientists at Tokyo Institute of Technology (Tokyo Tech) explore how nitrogen vacancies in catalysts participate in the synthesis of ammonia, a pivotal chemical in the fertilizer industry.

Achieving highly efficient ammonia synthesis by altering the rate-determining step
The electrochemical conversion of nitrogen to ammonia is the most promising alternative of the traditional Haber-Bosch process to achieve nitrogen fixation under ambient conditions.

Ammonia sparks unexpected, exotic lightning on Jupiter
NASA's Juno spacecraft -- orbiting and closely observing the planet Jupiter -- has unexpectedly discovered lightning in the planet's upper atmosphere, according to a multi-institutional study led by the NASA/Jet Propulsion Laboratory (JPL).

Ammonia-rich hail sheds new light on Jupiter's weather
New Juno results suggest that the violent thunderstorms taking place in Jupiter's atmosphere may form ammonia-rich hail, or 'mushballs', that play a key role in the planet's atmospheric dynamics.

Ammonia synthesis from selective electroreduction of nitrates over electron-deficient Co
Heterostructured Co/CoO nanosheet arrays with electron-deficient Co were constructed and exhibited excellent performances for nitrate electroreduction to ammonia: Faradaic efficiency (93.8%) and selectivity (91.2%), greatly outperforming Co NSAs.

Read More: Ammonia News and Ammonia Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.