RNA quality control system goes awry in frontotemporal lobar degeneration

August 24, 2020

Osaka, Japan - Researchers at Osaka University have identified a fault in the RNA quality control system of cells that leads to the haywire production of toxic proteins in frontotemporal lobar degeneration and amyotrophic lateral sclerosis (FTLD/ALS). Their new study, published in The EMBO Journal, shows that an abnormality of the C9orf72 gene produces toxic proteins that hinder the cells' ability to destroy defective C9orf72 RNA, which leads to the buildup of more toxic proteins. Ultimately, this creates a vicious cycle that accelerates the disease process.

The incurable neurodegenerative disorders FTLD and ALS share genetic features, including their most common genetic cause: an expansion of the repeating portion of the C9orf72 gene. Cells use DNA codes to write instructions for manufacturing new proteins in the form of RNA. In C9orf72-associated FTLD/ALS, the repeat DNA is transcribed into defective repeat RNA, which clusters in the cell and manufactures toxic proteins.

"Repeat RNA can be toxic itself and is the source of highly toxic protein. So reducing repeat RNA could be a therapeutic option in FTLD/ALS caused by this genetic abnormality," says Kohji Mori, corresponding author of the study.

The researchers used cellular models to investigate the RNA exosome, the system responsible for destroying defective RNA. Damaging EXOSC10, a key player in the RNA exosome, increased the accumulation of repeat RNA and its toxic protein products. Cells with an accumulation of the toxic proteins showed EXOSC10 function going awry. The researchers confirmed the findings in cells derived from patients with the disorders, solidifying the RNA exosome as the site for degradation of pathogenic C9orf72-derived repeat RNA.

"The RNA exosome works to degrade the defective RNA until it becomes swamped by inhibitory effects of the toxic proteins, initiating a downward spiral that may exacerbate neurodegeneration in C9orf72-associated FTLD/ALS," says lead author Yuya Kawabe.

Typically, a DNA code is read in one direction, but the repeat expansion in C9orf72 is bidirectionally transcribed. The researchers tested RNA transcribed from both directions, referred to as sense and antisense RNAs. Both RNAs accumulated, produced toxic protein, and were degraded by EXOSC10.

The findings provide a look into the machinery that drives disease progression at the cellular level. People with FTLD/ALS have few options--no treatments can prevent FTLD/ALS, cure it, or even slow its progression. But this new understanding of the pathological process opens up avenues to explore for therapy options.
The article, "The RNA exosome complex degrades expanded hexanucleotide repeat RNA in C9orf72 FTLD/ALS," was published in The EMBO Journal at DOI: https://doi.org/10.15252/embj.2019102700.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Amyotrophic Lateral Sclerosis Articles from Brightsurf:

Converting lateral scanning into axial focusing to speed up 3D microscopy
In optical microscopy, high-speed volumetric imaging is limited by either the slow axial scanning rate or aberrations introduced by the z-scanning mechanism.

Ammonium triggers formation of lateral roots
Despite the importance of changes in root architecture to exploit local nutrient patches, mechanisms integrating external nutrient signals into the root developmental program remain poorly understood.

'Reelin' in a new treatment for multiple sclerosis
In an animal model of multiple sclerosis (MS), decreasing the amount of a protein made in the liver significantly protected against development of the disease's characteristic symptoms and promoted recovery in symptomatic animals, UTSW scientists report.

Adjustable lordotic expandable vs static lateral lumbar interbody fusion devices
The objective of this study is to compare the clinical and radiographic outcomes between patients treated with static and expandable interbody spacers with adjustable lordosis for MIS LLIF.

Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation
Chiral nanoparticles which twist the light were theoretically predicted to experience lateral forces perpendicular to light vector but lacks experimental verification.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

Researchers delay onset of amyotrophic lateral sclerosis (ALS) in laboratory models
Scientists have delayed the onset of amyotrophic lateral sclerosis (ALS) in laboratory models, leaving them cautiously optimistic that the result, combined with other clinical advances, points to a potential treatment for ALS in humans.

Emerging role of adenosine in brain disorders and amyotrophic lateral sclerosis
The role of adenosine in neurodegeneration and neuroregeneration has led to growing attention on adenosine receptors as potential drug targets in a range of brain disorders, including neuroregenerative therapy and treatment for amyotrophyic lateral sclerosis (ALS).

New clues about the origins of familial forms of Amyotrophic lateral sclerosis
A Brazilian study made important progress in understanding the accumulation of one of the proteins involved in amyotrophic lateral sclerosis (ALS).

Recrutement of a lateral root developmental pathway into root nodule formation of legumes
Peas and other legumes develop spherical or cylindrical structures -- called nodules -- in their roots to establish a mutually beneficial relationship with bacteria that convert atmospheric nitrogen into a useable nutrient for the legume plant.

Read More: Amyotrophic Lateral Sclerosis News and Amyotrophic Lateral Sclerosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.