# Sussex study enables predicting computational power of early quantum computers

August 24, 2020- University of Sussex quantum physicists have developed an algorithm which helps early quantum computers to perform calculations most efficiently
- The team used their model to calculate the expected computational power of early quantum computers
- Their research highlights a fundamental advantage of the 'trapped ion' approach over other methods

The Sussex team have shown how calculations in such a quantum computer can be done most efficiently, by using their new 'routing algorithm'. Their paper "Efficient Qubit Routing for a Globally Connected Trapped Ion Quantum Computer" is published in the journal

*Advanced Quantum Technologies*.

The team working on this project was led by Professor Winfried Hensinger and included Mark Webber, Dr Steven Herbert and Dr Sebastian Weidt. The scientists have created a new algorithm which regulates traffic within the quantum computer just like managing traffic in a busy city. In the trapped ion design the qubits can be physically transported over long distances, so they can easily interact with other qubits. Their new algorithm means that data can flow through the quantum computer without any 'traffic jams'. This in turn gives rise to a more powerful quantum computer.

Quantum computers are expected to be able to solve problems that are too complex for classical computers. Quantum computers use quantum bits (qubits) to process information in a new and powerful way. The particular quantum computer architecture the team analysed first is a 'trapped ion' quantum computer, consisting of silicon microchips with individual charged atoms, or ions, levitating above the surface of the chip. These ions are used to store data, where each ion holds one quantum bit of information. Executing calculations on such a quantum computer involves moving around ions, similar to playing a game of Pacman, and the faster and more efficiently the data (the ions) can be moved around, the more powerful the quantum computer will be.

In the global race to build a large scale quantum computer there are two leading methods, 'superconducting' devices which groups such as IBM and Google focus on, and 'trapped ion' devices which are used by the University of Sussex's Ion Quantum Technology group, and the newly emerged company Universal Quantum, among others.

Superconducting quantum computers have stationary qubits which are typically only able to interact with qubits that are immediately next to each other. Calculations involving distant qubits are done by communicating through a chain of adjacent qubits, a process similar to the telephone game (also referred to as 'Chinese Whispers'), where information is whispered from one person to another along a line of people. In the same way as in the telephone game, the information tends to get more corrupted the longer the chain is. Indeed, the researchers found that this process will limit the computational power of superconducting quantum computers.

In contrast, by deploying their new routing algorithm for their trapped ion architecture, the Sussex scientists have discovered that their quantum computing approach can achieve an impressive level of computational power. 'Quantum Volume' is a new benchmark which is being used to compare the computational power of near term quantum computers. They were able to use Quantum Volume to compare their architecture against a model for superconducting qubits, where they assumed similar levels of errors for both approaches. They found that the trapped-ion approach performed consistently better than the superconducting qubit approach, because their routing algorithm essentially allows qubits to directly interact with many more qubits, which in turn gives rise to a higher expected computational power.

Mark Webber, a doctoral researcher in the Sussex Centre for Quantum technologies, at the University of Sussex, said:

"We can now predict the computational power of the quantum computers we are constructing. Our study indicates a fundamental advantage for trapped ion devices, and the new routing algorithm will allow us to maximize the performance of early quantum computers."

Professor Hensinger, director of the Sussex Centre for Quantum Technologies at the University of Sussex said:

"Indeed, this work is yet another stepping stone towards building practical quantum computers that can solve real world problems."

Professor Winfried Hensinger and Dr Sebastian Weidt have recently launched their spin-out company Universal Quantum which aims to build the world's first large scale quantum computer. It has attracted backing from some of the world's most powerful tech investors. The team was the first to publish a blue-print for how to build a large scale trapped ion quantum computer in 2017.

-end-

University of Sussex

## Related Quantum Computers Articles from Brightsurf:

Optical wiring for large quantum computers

Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers

A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers

A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing

Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers

Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers

A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers

Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers

A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications

Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers

Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events

Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers

A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers

A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing

Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers

Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers

A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers

Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers

A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications

Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers

Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events

Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.