Less flocking behavior among microorganisms reduces the risk of being eaten

August 24, 2020

When algae and bacteria with different swimming gaits gather in large groups, their flocking behaviour diminishes, something that may reduce the risk of falling victim to aquatic predators. This finding is presented in an international study led from Lund University in Sweden.

Flocking behaviour arises seemingly spontaneously in a group of independent individuals without a clear leader. This behaviour occurs among many types of organisms, from bacteria to mammals and humans. In a new study published in Physical Review Letters, researchers at Lund University examined the flocking behaviour of two different types of microorganism. By studying the backwashes - fluid flows - created around the organisms as they swim, the researchers have been able to find out how they affect each other.

"We have looked at a mixture of two types of swimmers. Those that use 'breaststroke', namely certain types of algae, and those that swim with a 'propeller' behind them, like most bacteria", says Joakim Stenhammar, chemistry researcher at Lund University.

Previous research has shown that microorganisms with the same swimming technique can sense, and are affected by, each other's fluid flows. This means they can move in a synchronised way over long length scales several times faster than an individual bacterium can swim.

However, in the new study the Lund researchers could establish through using computer simulations and theoretical models that this flocking behaviour completely disappears when microorganisms with different swimming styles are mixed.

"Their collective fluid flows then behave as though the individuals could not sense each other's presence. You could say that the microorganisms gain a cloak of invisibility", says Joakim Stenhammar.

The new study is an important piece of the puzzle in understanding how flocking behaviour works in biological systems. Now the work will continue with the study of increasingly detailed models of how actual microorganisms behave. This will enable comparisons between the theoretical results and experimental observations.

"On a biological level there may be advantages from symbiotic ecosystems in which bacteria and algae live together. The suppression of flocking behaviour may reduce the risk of being eaten, as many aquatic predators sense the fluid flows to localise prey", concludes Joakim Stenhammar.

Lund University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.