Nav: Home

Small quake clusters can't hide from AI

August 24, 2020

HOUSTON - (Aug. 24, 2020) - Researchers at Rice University's Brown School of Engineering are using data gathered before a deadly 2017 landslide in Greenland to show how deep learning may someday help predict seismic events like earthquakes and volcanic eruptions.

Seismic data collected before the massive landslide at a Greenland fjord shows the subtle signals of the impending event were there, but no human analyst could possibly have put the clues together in time to make a prediction. The resulting tsunami that devastated the village of Nuugaatsiaq killed four people and injured nine and washed 11 buildings into the sea.

A study lead by former Rice visiting scholar Léonard Seydoux, now an assistant professor at the University of Grenoble-Alpes, employs techniques developed by Rice engineers and co-authors Maarten de Hoop and Richard Baraniuk. Their open-access report in Nature Communications shows how deep learning methods can process the overwhelming amount of data provided by seismic tools fast enough to predict events.

De Hoop, who specializes in mathematical analysis of inverse problems and deep learning in connection with Rice's Department of Earth, Environmental and Planetary Sciences, said advances in artificial intelligence (AI) are well-suited to independently monitor large and growing amounts of seismic data. AI has the ability to identify clusters of events and detect background noise to make connections that human experts might not recognize due to biases in their models, not to mention sheer volume, he said.

Hours before the Nuugaatsiaq event, those small signals began to appear in data collected by a nearby seismic station. The researchers analyzed data from midnight on June 17, 2017, until one minute before the slide at 11:39 p.m. that released up to 51 million cubic meters of material.

The Rice algorithm revealed weak but repetitive rumblings -- undetectable in raw seismic records -- that began about nine hours before the event and accelerated over time, leading to the landslide.

"There was a precursor paper to this one by our co-author, Piero Poli at Grenoble, that studied the event without AI," de Hoop said. "They discovered something in the data they thought we should look at, and because the area is isolated from a lot of other noise and tectonic activity, it was the purest data we could work with to try our ideas."

De Hoop is continuing to test the algorithm to analyze volcanic activity in Costa Rica and is also involved with NASA's InSight lander, which delivered a seismic detector to the surface of Mars nearly two years ago.

Constant monitoring that delivers such warnings in real time will save lives, de Hoop said.

"People ask me if this study is significant -- and yes, it is a major step forward -- and then if we can predict earthquakes. We're not quite ready to do that, but this direction is, I think, one of the most promising at the moment."

When de Hoop joined Rice five years ago, he brought expertise in solving inverse problems that involve working backwards from data to find a cause. Baraniuk is a leading expert in machine learning and compressive sensing, which help extract useful data from sparse samples. Together, they're a formidable team.

"The most exciting thing about this work is not the current result, but the fact that the approach represents a new research direction for machine learning as applied to geophysics," Baraniuk said.

"I come from the mathematics of deep learning and Rich comes from signal processing, which are at opposite ends of the discipline," de Hoop said. "But here we meet in the middle. And now we have a tremendous opportunity for Rice to build upon its expertise as a hub for seismologists to gather and put these pieces together. There's just so much data now that it's becoming impossible to handle any other way."

De Hoop is helping to grow Rice's reputation for seismic expertise with the Simons Foundation Math+X Symposia, which have already featured events on space exploration and mitigating natural hazards like volcanoes and earthquakes. A third event, dates to be announced, will study deep learning applications for solar giants and exoplanets.
Co-authors of the paper are Rice graduate student Randall Balestriero and Michel Campillo, a professor at Grenoble. Poli is a researcher at the French National Center for Scientific Research, Grenoble. De Hoop is the Simons Chair in Computational and Applied Mathematics and Earth Science and holds appointments in computational and applied mathematics, mathematics and Earth, environmental and planetary sciences at Rice. Baraniuk is the Victor E. Cameron Professor of Electrical and Computer Engineering and Computer Science at Rice and founder and director of OpenStax.

The research was supported by the European Research Council, the Multidisciplinary Institute in Artificial Intelligence at Grenoble-Alpes, the Simons Foundation, the Department of Energy, the National Science Foundation, the Air Force Office of Scientific Research, the Office of Naval Research and a Department of Defense Vannevar Bush Faculty Fellowship.

Read the abstract at

This news release can be found online at

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Creep and slip: Seismic precursors to the Nuugaatsiaq landslide:

Math+X grant brings applied mathematician/seismologist to Rice:

Maarten de Hoop Lab:

Richard Baraniuk Lab:

George R. Brown School of Engineering:

Images for download:
An overview by the U.S. Geological Survey shows the location of the Nuugaatsiaq landslide (yellow star) relative to five broadband seismic stations (pink triangles) within 500 km of the landslide. Nuugaatsiaq (NUUG) was impacted by the resulting tsunami the reached a height of 300 feet at sea, though it was much lower before it reached the village. The inset shows the geometry of the fjords relative to the landslide and Nuugaatsiaq. (Source: USGS)
A graph extracted by a novel Rice University algorithm shows waveforms from the cluster associated with precursors and aligned with respect to a reference waveform within the cluster. The data was from three seismograms collected over the course of the day before the Nuugaatsiaq landslide. (Source: Nature Communications)
CAPTION: Maarten de Hoop. (Credit: Jeff Fitlow/Rice University)
CAPTION: Richard Baraniuk. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Rice University

Related Earthquakes Articles:

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.
New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.
Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.
Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.
Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.
How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.
Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.
Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.
Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.
Earthquakes in slow motion
A survey of slow-slip events in Cascadia reveals new insight into the recently discovered phenomenon.
More Earthquakes News and Earthquakes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.