WSU ecologist says defense by plants to disease may leave them vulnerable to insect attack

August 25, 2003

Some of the defenses plants use to fight off disease leave them more susceptible to attack by insects, according to a Don Cipollini, Ph.D., a chemical ecologist at Wright State University.

Cipollini, an assistant professor of biological sciences, presented a research paper on this topic this month at the annual meeting of the Ecological Society of America in Savannah, Ga.

"Plant Resistance and Susceptibility" was the title of the session where Cipollini presented his findings. "My research shows that induction of a particular plant response to pathogens that results in enhanced resistance to disease (termed systemic acquired resistance) can nullify the induction of resistance to feeding by some insects," he explained. "This interaction can result in the unfortunate tradeoff where plants become resistant to some diseases, but more susceptible to some insects. This phenomenon represents an ecological cost of resistance."

His study, done in collaboration with researchers at the University of Chicago, illustrates the effects of salicylate, a natural plant chemical, on resistance of the plant species Arabidopsis thaliana to the beet armyworm larvae (Spodoptera exigua). Salicylate is chemically similar to the aspirin that humans take, and it functions in nature to heighten plant defenses to pathogens, or disease-causing microbes. When applied to plants, salicylate can interfere with the induction of resistance to some insects, however, leaving them more susceptible to insect feeding damage.

Cipollini's research, which has funding support from the U.S. Department of Agriculture, has implications for crop plants in which salicylate-mediated defenses have been either genetically engineered or chemically manipulated. It also illustrates natural constraints on the evolution of plant resistance.

A major research interest of the Wright State scientist is how plants cope with insects and diseases. This includes examining biochemical mechanisms of resistance, as well as the ecological costs and benefits of plant responses to pests.

Cipollini, who received a WSU Presidential Award for Faculty Excellence Early Career Achievement earlier this year, has been invited to present his induced defense research at international symposia in Australia and Canada next year.
-end-
For more information on his research, contact Cipollini at 937-775-3805 or don.cipollini@wright.edu. The Web page for Ecological Society of America is http://www.esa.org and Cipollini's research Web page is http://www.wright.edu/~don.cipollini.

Wright State University

Related Pathogens Articles from Brightsurf:

Pathogens in the mouth induce oral cancer
Pathogens found in tissues that surround the teeth contribute to a highly aggressive type of oral cancer, according to a study published 1st October in the open-access journal PLOS Pathogens by Yvonne Kapila of the University of California, San Francisco, and colleagues.

A titanate nanowire mask that can eliminate pathogens
Researchers in Lásló Forró's lab at EPFL, Switzerland, are working on a membrane made of titanium oxide nanowires, similar in appearance to filter paper but with antibacterial and antiviral properties.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

The Parkinson's disease gut has an overabundance of opportunistic pathogens
In 2003, Heiko Braak proposed that Parkinson's disease is caused by a pathogen in the gut that could pass through the intestinal mucosal barrier and spread to the brain through the nervous system.

Crop pathogens 'remarkably adaptable'
Pathogens that attack agricultural crops show remarkable adaptability to new climates and new plant hosts, new research shows.

Inexpensive, portable detector identifies pathogens in minutes
Most viral test kits rely on labor- and time-intensive laboratory preparation and analysis techniques; for example, tests for the novel coronavirus can take days to detect the virus from nasal swabs.

Outsmarting pathogens
A new influenza strain appears each flu season, rendering past vaccines ineffective.

Autonomous microtrap for pathogens
Antibiotics are more efficient when they can act on their target directly at the site of infestation, without dilution.

Acidic environment could boost power of harmful pathogens
New findings published in PLOS Pathogens suggest lower pH in the digestive tract may make some bacterial pathogens even more dangerous.

Protozoans and pathogens make for an infectious mix
The new observation that strains of V. cholerae can be expelled into the environment after being ingested by protozoa, and that these bacteria are then primed for colonisation and infection in humans, could help explain why cholera is so persistent in aquatic environments.

Read More: Pathogens News and Pathogens Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.