Drug-resistant bacteria may find new foe in novel drug design approach

August 25, 2004

PHILADELPHIA, PA--At the 228th national meeting of the American Chemical Society held this week in Philadelphia, researchers from Harvard Medical School report that they have found a way to produce novel aminocoumarins, antibiotics that can help in the fight against drug-resistant bacteria.

The development of bacterial resistance to antibiotics is a major public health concern. Currently, doctors have precious few weapons to fight strains such as methicillin-resistant Staphylococcus aureus (MRSA). Though some of these "super bugs" are sensitive to aminocoumarins, there's a catch. Low solubility, poor absorption and distribution, and the inability to penetrate the bacterial cell wall, make these compounds less than ideal antibiotics.

Now, Christopher T. Walsh, the Hamilton Kuhn Professor of Biological Chemistry and Molecular Pharmacology at Harvard Medical School, and colleagues report a method that can be used to generate potentially hundreds of aminocoumarin variants. "This approach allows the controlled variation of all parts of the aminocoumarin scaffold in the search to create antibiotics with tailored and improved properties," said Walsh.

In an ironic twist, the method developed by the researchers exploits bacterial enzymes. Caren Freel Meyers, a research fellow in Walsh's lab, has used an alphabet soup of proteins from Streptomyces to make an enzymatic production line that adds, stepwise, different chemical moieties to the backbone of coumermycin A1, a member of the aminocoumarin family of antibiotics.

Starting with this coumermycin scaffold, Freel Meyers used the enzyme CouL to add one or two amino groups, then CouM to add a sugar component called L-noviose. The enzyme CouP was found to add methyl groups to the CouM products, and NovN was used to add one or two carbamoyl moieties to methylated CouP product variants. By playing mix-and-match with enzymes and CouL substrates that make up the coumermycin A1 backbone, multiple designs can be rolled off the production line. In a proof of principle experiment, Freel Meyers generated a library of nine coumermycin variants. Three of these compounds have been produced in sufficient quantity for detailed analysis, and they are currently undergoing biological evaluation.

Aminocoumarins are inhibitors of bacterial type II topoisomerases, enzymes that untwist and unknot DNA. Without these topoisomerases bacteria cannot replicate. For this reason, fluoroquinolone antibiotics, such as ciprofloxacin and levofloxacin, which are potent inhibitors of type II topoisomerases, have found widespread use. However, the emergence of resistant bacterial strains has renewed interest in the aminocoumarin novobiocin, which is one of the few drugs available that is effective against MRSA. The sugar moieties attached to the coumermycin backbone are thought to bind to and inactivate the essential bacterial topoisomerase DNA gyrase. By modifying the noviose substituents Freel Meyers and colleagues hope to develop more effective gyrase inhibitors. By modifying other components of the backbone the researchers hope to turn these inhibitors into potent antibiotics, ones that are more soluble, have better pharmacokinetics, and more readily penetrate their bacterial targets.
Harvard Medical School has more than 5,000 full-time faculty working in eight academic departments based at the School's Boston quadrangle or in one of 47 academic departments at 18 Harvard teaching hospitals and research institutes. Those Harvard hospitals and research institutions include Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Cambridge Hospital, The CBR Institute for Biomedical Research, Children's Hospital Boston, Dana-Farber Cancer Institute, Forsyth Institute, Harvard Pilgrim Health Care, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, Massachusetts Mental Health Center, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital, VA Boston Healthcare System.

Harvard Medical School

Related Antibiotics Articles from Brightsurf:

Insights in the search for new antibiotics
A collaborative research team from the University of Oklahoma, the Memorial Sloan Kettering Cancer Center and Merck & Co. published an opinion article in the journal, Nature Chemical Biology, that addresses the gap in the discovery of new antibiotics.

New tricks for old antibiotics
The study published in the journal Immunity reveals that tetracyclines (broad spectre antibiotics), by partially inhibiting cell mitochondria activity, induce a compensatory response on the organism that decreases tissue damage caused during infection.

Benefits, risks seen with antibiotics-first for appendicitis
Antibiotics are a good choice for some patients with appendicitis but not all, according to study results published today in the New England Journal of Medicine.

How antibiotics interact
Understanding bottleneck effects in the translation of bacterial proteins can lead to a more effective combination of antibiotics / study in 'Nature Communications'

Are antivitamins the new antibiotics?
Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago.

Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.

Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.

Read More: Antibiotics News and Antibiotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.