Normalizing tumor vessels to improve cancer therapy

August 25, 2008

Chemotherapy drugs often never reach the tumors they're intended to treat, and radiation therapy is not always effective, because the blood vessels feeding the tumors are abnormal--"leaky and twisty" in the words of the late Judah Folkman, MD, founder of the Vascular Biology program at Children's Hospital Boston. Now, Vascular Biology researchers have discovered an explanation for these abnormalities that could, down the road, improve chemotherapy drug delivery. Their findings were published in the August 12 issue of the Proceedings of the National Academy of Sciences.

A tumor's capillaries--small blood vessels that directly deliver oxygen and nutrients to cancer cells--are irregularly shaped, being excessively thin in some areas and forming thick, snarly clumps in others. These malformations create a turbulent, uneven blood flow, so that too much blood goes to one region of the tumor, and too little to another. In addition, the capillary endothelial cells lining the inner surface of tumor capillaries, normally a smooth, tightly-packed sheet, have gaps between them, causing vessel leakiness.

"These abnormal features of tumor vessels impair delivery of circulating chemotherapeutic drugs to the actual tumor site" says Kaustabh Ghosh, PhD, first author on the paper, and a postdoctoral fellow in the laboratory of Donald Ingber, MD, PhD, the paper's senior author and interim co-director of the Vascular Biology program.

The idea of a therapy aimed at normalizing a tumor's blood vessels, to ensure that chemotherapeutic agents reach the tumor, has already been explored, but these attempts have only targeted soluble factors, particularly vascular endothelial growth factor (VEGF). Tumors secrete VEGF in abundance; it not only promotes blood vessel growth (angiogenesis), but makes them leaky. While blocking VEGF action helps reduce leakiness and improves vessel function, the effects have been transient, Ghosh says.

Ghosh and Ingber took a different approach, focusing on the role of mechanical forces on tumor blood vessels, which had previously been ignored. Past studies by Ingber and colleagues have shown that a capillary cell's sensitivity to soluble angiogenic factors like VEGF--and subsequent blood vessel formation--are determined by the mechanical balance between the cell's internal state of tension or contraction, and that of the surrounding support structure, or matrix, to which the cell adheres. These forces guide normal vascular pattern formation. Because tumor vessels are malformed, Ghosh wondered whether tumor capillary cells have lost the normal cells' ability to sense and respond to changes in matrix stiffness and distortion.

To address this question, the researchers studied capillary cells isolated from mice prostate tumors, provided by Andrew Dudley, PhD, in the lab of Michael Klagsbrun, PhD, in the Vascular Biology Program, and exposed them to cyclic mechanical stress--mimicking the pulsatile nature of blood flow and matrix distortion resulting from rhythmic heart beats. They found that normal capillary cells aligned themselves uniformly perpendicular to the force direction, but most of the tumor capillary cells failed to reorient, says Ghosh. These cells were "all over the place," and due to this lack of alignment, gaps appeared between neighboring cells, which may explain the increased vessel permeability.

Ghosh and colleagues also found that tumor capillary cells sense and respond to matrix rigidity differently than normal cells. When placed on a stiff surface, mimicking the tumor matrix, the cells tended to keep spreading even after normal capillary cells stopped doing so. Because of these differences in "mechanosensing," the tumor capillary cells were able to form capillaries even when cell densities were very low, while normal cells failed to do so. At higher cell densities, normal cells formed nice capillaries, whereas the tumor cells balled up into tangled clumps, creating the irregular patterns seen in many images of tumor blood vessels. "Because high cell density increases contractility across the entire cell layer, these findings suggested that tumor capillary cells are inherently hyper-contractile," says Ghosh.

The researchers went on to find that this hyper-contractility results from an increase in the levels of a protein called Rho-associated kinase (ROCK), which controls tension within the cell. When they treated tumor capillary cells with an inhibitor of ROCK, they normalized the behavior of the tumor capillary cells, so that the treated cells exhibited near-normal mechanical responses and formed more regularly-shaped tubular vessels. "In this study, we've uncovered a previously unrecognized role for tumor capillary cell mechanosensing and contractility in the formation of irregular tumor vessels, and have identified potential new targets for vascular normalization therapy that might be implemented in the clinic someday," Ghosh says.
-end-
Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 11 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 397-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: www.childrenshospital.org/newsroom

Boston Children's Hospital

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.