New tool enhances the search for genetic mutations

August 25, 2013

Concealed within the vastness of the human genome, (comprised of some 3 billion base pairs), mutations are commonplace. While the majority of these appear to have neutral effect on human health, many others are associated with diseases and disease susceptibility.

Reed Cartwright, a researcher at Arizona State University's Biodesign Institute, along with colleagues at ASU, Washington University and the Wellcome Trust Sanger Institute, Cambridge, UK, report on a new software tool known as DeNovoGear, which uses statistical probabilities to help identify mutations and more accurately pinpoint their source and their possible significance for health.

Improvements in the accuracy of mutation identification and validation could have a profound impact on the diagnosis and treatment of mutation-related diseases.

"These techniques are being considered in two different realms," Cartwright says. "The first is for pediatric diseases." Here, a child with an unusual genetic disease may undergo genomic sequencing to see if the mutations observed have been acquired from the parents or are instead, unique to the child. "We can identify these mutations and try to detect which gene may be broken," he says.

The second application is for cancer research, where tumor tissues are genetically compared with normal tissue. Many now believe that the identification of a specific cancer mutation may eventually permit clinicians to customize a treatment for that tissue type. "We are developing methods to allow researchers to make those types of analyses, using advanced, probabilistic methods," Cartwright says. "We actually model the whole process."

Indeed, the method described provides the first model-based approach for ferreting out certain types of mutations. The group's research results appear in today's issue of the journal Nature Methods.

One of the primary goals in genetics is to accurately characterize genetic variation and the rate at which it occurs. Searching for DNA mutations through genetic sequencing is an important ingredient in this quest, but many challenges exist. The current study focuses on a class of mutations that play a critical role in human disease, namely de novo mutations, which arise spontaneously and are not derived from the genomes of either parent.

Traditionally, two approaches for identifying de novo mutation rates in humans have been applied, each involving estimates of average mutations over multiple generations. In the first, such rates are measured directly through an estimation of the number of mutations occurring over a known number of generations. In the second or indirect method, mutation rates are inferred by estimating levels of genetic variation within or between species.

In the new study, a novel approach is used. The strategy, pioneered in part by Donald Conrad, professor in the Department of Genetics at Washington University School of Medicine and corresponding author of the current study, takes advantage of high throughput genetic sequencing to examine whole genome data in search of de novo mutations.

"This collaboration started a few years ago, when Donald and I were both working on mutations for the 1000 genomes project," Cartwright says, referring to an ambitious project to produce a comprehensive map of human variation using next-gen sequencing.

The mutations under study may take the form of either point mutations--individual nucleotide substitutions, or so-called indel (insertion-deletion) mutations. In the latter case, single nucleotides or nucleotide sequences may be either added or subtracted from the genome.

While point mutations and indel mutations can both have adverse affects on health, indels are significantly more difficult to identify and verify. They have a strong potential to cause havoc when they occur in coding portions of the genome as the addition or deletion of nucleotides can disrupt the translation process needed to accurately assemble proteins. (The current study is the first paper to use model-based approaches to detect indel mutations.)

A seemingly simple approach to pinpointing mutations is to compare sequence data from each parent with sequence data from their offspring. Where changes exist at a given site in the offspring, de novo mutations can be inferred and their potential affect on human health, assessed.

In reality, such efforts are complicated by a number of potential sources of error, including insufficient sampling of the genome, mistakes in the gene sequencing process and errors of alignment between sequences. The new method uses a probabilistic algorithm to evaluate the likelihood of mutation at each site in the genome, comparing it with actual sequence data (See Figure 1).

Human cells contain two copies of the genome--one from each parent. For most positions in the genome, the bases from each parent are the same or homozygous but occasionally, they are different or heterozygous.

Errors derived from conventional methods can take the form of false negatives, particularly when gene sequencing misses heterozygous sites in the genotype of the child. On the other hand, failure to identify a heterozygous site in one of the parents can lead to a false positive result. (See Figure 2)

The new method assesses the chances of an actual de novo mutation for the child in the example as very low, hence revising the false positive result (upper right panel). In the lower right panel, the new method finds a high probability for a de novo mutation, thereby revising the conventional method's false negative.

In the current study, data from the 1000 genomes project was analyzed using DeNovoGear, with markedly improved accuracy. The technique will assist ongoing efforts to better understand which mutations contribute to sporadic disease or cancer in individuals, the distribution of mutations and their characteristics across populations.

The power of this technique comes from its probabilistic model which calculates the probability of a de novo mutation at a site based on estimations of mutation rates, sequencing error rate, and the initial genetic variation in the population from which the parents arise. This model is able to consider multiple explainations for experimental observations and decide between them. The probabilities are used to indentify candidate loci which are then evaluated using target resequncing.

Given adequate data of genetic pedigree, the method is able to distinguish germline from somatic mutations in an automated manner with high accuracy. "Our goal is to develop software that will allow researchers and clinicians to estimate a range of mutation types, faster, more accurately, and cheaper," Cartwright says.

In addition to further refining the DeNovoGear software, Cartwright's group plans to more closely examine normal human tissue in order to establish rates of somatic mutation. Some of the specific mutations currently associated with cancer for example, may actually be part of normal variability, which appears to be much greater than originally assumed. "No one has really looked at this at the level we're interested in."
-end-
DeNovoGear: de novo indel and point mutation discovery and phasing

Authors: Avinash Ramu1,6, Michiel J Noordam1,6, Rachel S Schwartz2, Arthur Wuster3, Matthew E Hurles3, Reed A Cartwright2,4 & Donald F Conrad1,5

1Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. 2Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA. 3Genome Mutation and Genetic Disease Group, Wellcome Trust Sanger Institute, Cambridge, UK. 4School of Life Sciences, Arizona State University, Tempe, Arizona, USA. 5Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA. 6

Written by: Richard Harth

Science Writer: Biodesign Institute richard.harth@asu.edu

Arizona State University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.