RNA sequence could help doctors to tailor unique prostate cancer treatment programs

August 25, 2014

Sequencing RNA, not just DNA, could help doctors predict how prostate cancer tumors will respond to treatment, according to research published in the open access journal Genome Biology. Because a tumor's RNA shows the real time changes a treatment is causing, the authors think this could be a useful tool to aid diagnosis and predict which treatment will most benefit individual cancer patients.

Colin Collins and Alexander Wyatt, and other researchers from the Vancouver Prostate Centre at the Vancouver Coastal Health Research Institute, matched 25 patients' treatment outcomes with the RNA sequence of their prostate cancer tumors. They suggest that similarities between the RNA of some of the patients' tumors could open up new avenues of treatment.

Prostate cancer is the fourth most common cancer worldwide, but can be effectively managed. Doctors normally recommend a combination of therapies, because patients' reaction to treatment varies considerably. The side-effects of these treatments can be significant, so current research is focused around precision medicine - classifying patients on their tumor's molecular changes, and only giving them the treatments that are expected to be most effective.

To investigate variations between the highest risk cases of prostate cancer, researchers conducted a range of genomic analyses, including sequencing the RNA in 25 patients' prostate tumors. The RNA molecules direct which proteins the cell produces, so the RNA sequences show how tumor cells behave differently to normal cells.

Alexander Wyatt, Vancouver Prostate Centre, says: "Most genomic sequencing studies have focused on the DNA, which gives us important information about a tumor's history. In our study we examined RNA, which tells us which genes are being used and are disrupted at the time the tumor was collected."

They then matched up this data with the detailed follow-up information that they had for each of the patients. They were then able to see what sequence disruptions were associated with a positive reaction to different therapies, and they believe this could aid personalized medicine.

Alexander Wyatt says: "We were surprised by the sheer number of genomic differences between patients. This complexity may help explain why patients respond differently to treatment, and why some tumors grow faster than others. The more we understand tumor-to-tumor variability, the closer we come to accurately tailoring a patient's management specifically for his own tumor. Overall, this is a very exciting time for cancer research, as global sequencing efforts mean we are advancing towards precision oncology."

Another potential use of this information is that in certain groups, there was a similarity in the type of genes and pathways that were disrupted in the tumors. This might indicate an underlying cancer mechanism that could be exploited to create new cancer treatments.

Alexander Wyatt says: "Despite the enormous complexity between patients at the individual gene level, when we examined the functions of affected genes, clear commonalities between groups of patients emerged. Ultimately it may be possible to exploit this convergent biology."
-end-


Media Contacts


Shane Canning
Media Officer
BioMed Central
T: +44 (0)20 3192 2243
E: shane.canning@biomedcentral.com

Faydra Aldridge
Director, Stakeholder Relations & Public Affairs
Vancouver Coastal Health Research Institute
T: +1 604 875 4111 x66687
E: faydra.aldridge@vch.ca

Notes to Editor

1. Research

Heterogeneity in the inter-tumor transcriptome of high risk prostate cancer Alexander W Wyatt, Fan Mo, Kendric Wang, Brian McConeghy, Sonal Brahmbhatt, Lina Jong, Devon M Mitchell, Rebecca L Johnston, Anne Haegert, Estelle Li, Janet Liew, Jake Yeung, Raunak Shrestha, Anna Lapuk, Andrew McPherson, Robert Shukin, Robert H Bell, Shawn Anderson, Jennifer Bishop, Antonio Hurtado-Coll, Hong Xiao, Arul M Chinnaiyan, Rohit Mehra, Dong Lin, Yuzhuo Wang, Ladan Fazli, Martin E Gleave, Stanislav V Volik and Colin C Collins Genome Biology 2014 15: 426

For a copy of the paper during embargo period please contact Shane Canning

After embargo, article available at journal website here: http://genomebiology.com/2014/15/8/426

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

2. Genome Biology serves the biological research community as an international forum for the dissemination, discussion and critical review of information about all areas of biology informed by genomic research. Key objectives are to provide a guide to the rapidly developing resources and technology in genomics and its impact on biological research, to publish large datasets and extensive results that are not readily accommodated in traditional journals, and to help establish new standards and nomenclature for post-genomic biology.

3. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

BioMed Central

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.