X-raying the Earth with waves from stormy weather 'bombs'

August 25, 2016

Using a detection network based in Japan, scientists have uncovered a rare type of deep-earth tremor that they attribute to a distant North Atlantic storm called a "weather bomb." The discovery marks the first time scientists have observed this particular tremor, known as an S wave microseism. And, as Peter Gerstoft and Peter D. Bromirski write in a related Perspective, their observation "gives seismologists a new tool with which to study Earth's deeper structure," one that will contribute to a clearer picture of Earth's movements, even those originating from the atmosphere-ocean system. Faint tremors called microseisms are phenomena caused by the sloshing of the ocean's waves on the solid Earth floor during storms. Detectable anywhere in the world, microseisms can be various waveforms that move through the Earth's surface and interior, respectively. So far, however, scientists analyzing microseismic activity in the Earth have only been able to chart P waves (those that animals can feel before an earthquake), and not their more elusive S wave counterpart (those that humans feel during earthquakes). Here, using 202 Hi-net stations operated by the National Research Institute for Earth Science and Disaster Prevention in Japan's Chugoku district, Kiwamu Nishida and Ryota Takagi successfully detected not only P wave microseisms triggered by a severe and distant North Atlantic storm, known as a weather bomb, but also S wave microseisms, too. What's more, the authors determined both the direction and distance to these waves' origins, providing insight into their paths as well as the earthly structures through which they traveled. In this way, the seismic energy travelling from this weather bomb storm through the Earth illuminated many dark patches of its interior. Nishida and Takagi's findings not only offer a new means by which to explore the Earth's internal structure, but they may also contribute to more accurate detection of earthquakes and oceanic storms.

American Association for the Advancement of Science

Related Waves Articles from Brightsurf:

Love waves from the ocean floor
Supercomputer simulations of planetary-scale interactions show how ocean storms and the structure of Earth's upper layers together generate much of the world's seismic waves.

Surface waves can help nanostructured devices keep their cool
A research team led by The Institute of Industrial Science, The University of Tokyo demonstrated that hybrid surface waves called surface phonon-polaritons provide enhanced thermal conductivity in nanoscale membranes.

Wound-healing waves
How do cells in our bodies ask for directions? Without any maps to guide them, they still know where to go to heal wounds and renew our bodies.

Remembrance of waves past: memory imprints motion on scattered waves
Now, it appears that between relativity and the classical (stationary) wave regime, there exists another regime of wave phenomena, where memory influences the scattering process.

Topological waves may help in understanding plasma systems
A research team has predicted the presence of 'topologically protected' electromagnetic waves that propagate on the surface of plasmas, which may help in designing new plasma systems like fusion reactors.

Magnetoacoustic waves: Towards a new paradigm of on-chip communication
Researchers have observed directly and for the first time magnetoacoustic waves (sound-driven spin waves), which are considered as potential information carriers for novel computation schemes.

The growth of an organism rides on a pattern of waves
Study shows ripples across a newly fertilized egg are similar to other systems, from ocean and atmospheric circulations to quantum fluids.

Controlling attention with brain waves
Having trouble paying attention? MIT neuroscientists may have a solution for you: Turn down your alpha brain waves.

Toward more efficient computing, with magnetic waves
MIT researchers have devised a novel circuit design that enables precise control of computing with magnetic waves -- with no electricity needed.

New method for using spin waves in magnetic materials
In order to miniaturize individual components of mobile phones or computers, for example, magnetic waves are currently regarded as promising alternatives to conventional data transmission functioning by means of electric currents.

Read More: Waves News and Waves Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.