Electron microscopy reveals how vitamin A enters the cell

August 25, 2016

NEW YORK, NY (August 25, 2016)--Using a new, lightning-fast camera paired with an electron microscope, Columbia University Medical Center (CUMC) scientists have captured images of one of the smallest proteins in our cells to be "seen" with a microscope.

The protein--called STRA6--sits in the membrane of our cells and is responsible for transporting vitamin A into the cell interior. Vitamin A is essential to all mammals and is particularly important for making light receptors in our eyes, and to ensuring normal fetal development.

Images of the protein, which revealed several unusual features, were published in the August 26th issue of the journal Science, by structural biologist Filippo Mancia, PhD, assistant professor of physiology and cellular biophysics at CUMC. Dr. Mancia led a team of scientists, including Wayne Hendrickson, Larry Shapiro, Joachim Frank and Bill Blaner at CUMC, Loredana Quadro at Rutgers University, Chiara Manzini at George Washington University, and David Weber at the University of Maryland School of Medicine.

Until the new study, the way STRA6 transports vitamin A into the cell had been a mystery. Most transporters interact directly with the substances they move. But STRA6 only interacts with Vitamin A via an intermediary protein that carries the greasy vitamin A in the bloodstream. Revealing the structure of STRA6 may not only give the researchers insight into Vitamin A transport, but may also provide clues about how other related transporters work.

A new type of camera technology was key to obtaining the images of STRA6. When paired with an electron microscope, the camera allows biologists to see tiny, previously unseen structural details of the inner machinery of our cells.

"We can now get near-atomic resolution because the new camera is much faster and allows us to take a movie of the molecules," says Oliver Clarke, PhD, an associate research scientist in the Hendrickson lab at CUMC. "Even under the electron microscope, the molecules are moving around by a tiny amount, but when you take a picture of something that is moving, the image is blurry. With the new camera technology, we can align the frames of the movie to generate a sharper image."

Imaging the molecule also depended on painstaking biochemical procedures, developed by Yunting Chen, PhD, an associate research scientist in the Mancia lab, to generate large quantities of the protein and separate it from the cell's other components. "It's a very delicate protein, and we had to mimic its environment to keep it from getting out of shape," she says. Those efforts took about two years to perfect.

The researchers used approximately 70,000 individual pictures of STRA6 to generate a 3-dimensional map of the protein, which was used to construct an atomic model accurate to the smallest detail. The images and model revealed that STRA6 is "a bit of a freak," says Dr. Clarke. Even more surprising was the fact that STRA6 does not work alone, but is instead tightly associated with another protein, calmodulin, which plays a key role in calcium signaling.

Although Vitamin A moves through STRA6 to enter the cell, there is no channel in STRA6 like most transporters. Instead, vitamin A enters the top of STRA6, but then appears poised to exit through a side window that opens directly into the cell membrane, not the cell interior.

Though this needs to be verified, the mechanism may be a way to protect cells from absorbing too much vitamin A. "Vitamin A is actually somewhat toxic," says Dr. Mancia. "Trapping vitamin A inside the membrane may keep control of the amount that gets into the cell."

The new model of STRA6 advances the understanding of a critical cellular function and may help researchers understand how other, still mysterious, cellular components work.
The study is titled: Structure of the STRA6 receptor for retinol uptake. Additional authors include Jonathan Kim (CUMC), Sean Stowe (University of Maryland School of Medicine), Youn-Kyung Kim (Rutgers), Zahra Assur (CUMC), Michael Cavalier (University of Maryland School of Medicine), Raquel Godoy-Ruiz (University of Maryland School of Medicine), and Desiree C. von Alpen (George Washington University). Wayne Hendrickson is University Professor and the Violin Family Professor of Physiology and Cellular Biophysics.

This work was supported by an NIH-NIGMS initiative to the New York Consortium on Membrane Protein Structure (NYCOMPS; U54 GM095315) and a Charles H. Revson Senior Fellowship.

The researchers declare no conflicts of interest.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Columbia University Medical Center

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.