Breakthrough in understanding of brain development: Immune cell involvement revealed

August 25, 2016

Okazaki, Japan - Microglia are cells that combat various brain diseases and injuries by swallowing foreign or disruptive objects and releasing molecules that activate repair mechanisms. Recent findings have suggested these brain cells are also active under normal conditions, where they can contribute to maturation and sculpting of neuronal circuits. Researchers centered at the National Institute for Physiological Sciences (NIPS) have now revealed new mechanisms by which microglia sculpt neural circuits. They show that microglia directly contact neurons to induce the formation of new neuron projections that eventually will connect with other neurons and thereby increase and/or strengthen brain connectivity. These new findings could deepen understanding of how developmental disorders such as autism and schizophrenia may occur.

Early in development, neurons in the brain are particularly active in seeking out other neurons and forming connections with them. Cells called microglia, which were first identified via their protection of the brain against infection and decay, have recently also been shown to feature in brain development.

In a new study reported in Nature Communications, the researchers used a combination of fluorescent labeling of cells and molecules, and imaging of particular regions of developing mouse brains to clarify how microglia influence formation of neuronal circuits. They demonstrated direct contact between microglia and dendrites, which are the parts of neurons that enable them to communicate with each other. This contact induces the formation of filopodia--thin structures that project out from the dendrites--seek out the terminals of other neurons, and form synapses that enable neuronal communication. "We were able to image microglia contacting dendrites using in vivo multiphoton imaging of layer 2/3 pyramidal neurons. To our surprise, microglia - dendrite contact caused a quite rapid appearance and growth of filopodia" lead author Akiko Miyamoto says. "We found that such contact was associated with accumulation of Ca2+ and actin, and that blocking the microglia activity led to fewer functional synapses and less specific cortical circuits."

These findings could have important implications for a range of developmental diseases, as various studies have revealed associations between immune cells and neurodevelopmental disorders.

"We know that some brain disorders are linked to abnormal numbers of synapses or changes in their shape and function. Disruption of the immune environment in the developing brain could be linked to some disorders," corresponding author Junichi Nabekura says. "Our new findings about how microglia influence connectivity in the brain by creating filopodia that go on to produce synapses could give us new targets in the search for treatments for these conditions."

The article "Microglia contact induces synapse formation in developing somatosensory cortex" was published in Nature Communications at DOI: 10.1038/ncomms12540
-end-


National Institutes of Natural Sciences

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.