Nav: Home

Earlier snowmelt reduces forests' ability to regulate atmospheric carbon dioxide

August 25, 2016

Earlier annual snowmelt periods may hinder the ability of forests to regulate atmospheric carbon dioxide (CO2), according to the results of a new study.

The findings, published in Geophysical Research Letters, a journal of the American Geophysical Union, predict that this shift in snowmelt timing each spring could result in a 45 percent reduction of snowmelt period forest carbon by mid-century.

A second study, also published in Geophysical Research Letters, found that earlier, slower snowmelt reduces the amount of streamflow, which has consequences for agriculture, municipal water supplies and recreational opportunities in Colorado and other states in the western U.S.

"The recent western drought has been accompanied by a snowpack restricted to higher elevations, with a significant effect on the ski industry," said Tom Torgersen, program director in the National Science Foundation (NSF) Division of Earth Sciences, which funded the research. NSF's Long-Term Ecological Research (LTER) program also supported the studies through the Niwot Ridge, Colorado, LTER site.

"Climate variability also leads to conditions favoring earlier and slower snowmelt, with a decreased and prolonged peak streamflow," Torgersen said. "This water flow affects mountain fishing and results in less forest growth. The effects of drought and climate variability on snowmelt reach far beyond farm productivity and urban water restrictions."

Implications for western U.S.

Forests in seasonally snow-covered areas serve as key CO2 sinks, thanks to the natural processes by which trees take in carbon. This carbon uptake is restrained during winter, but increases to peak capacity in spring when snowmelt provides abundant water to trees.

University of Colorado Boulder (CU-Boulder) scientists working at Niwot Ridge in Colorado's Rocky Mountains studied 15 years of snowmelt and atmospheric CO2 data to determine the effects of changes in snowmelt periods.

They found that earlier snowmelt triggered by climate change reduces forests' ability to take CO2 out of the atmosphere.

"The implications of this research are profound as mountains in the western U.S. are an important part of the regional cycling of carbon and water," said Noah Molotch, the director of CU-Boulder's Center for Water, Earth Science & Technology, and a co-author of both studies.

Added Taylor Winchell of CU-Boulder's Institute for Arctic and Alpine Research (INSTAAR) and lead author of one of the studies: "Early melting reduces trees' ability to uptake carbon during the snowmelt period, a key time for seasonal carbon uptake."

Downstream water resources

Snowmelt also provides water resources to downstream communities. Previous research shows that the timing and rate at which snow melts can affect the amount and quality of water available for vegetation, farming and fishing.

The researchers used a unique modeling system to study the effects of earlier snowmelt across various regions of the western U.S., including the Cascade Range, the Sierra Nevada, the Wasatch Range and the Rocky Mountains. These areas see significant seasonal snow accumulations that generate water resources for downstream communities.

The results show that earlier, slower snowmelt, triggered by warmer temperatures, reduces streamflow. These slower "trickle" melts reduce percolation in hillslope soils and allow more water to evaporate, resulting in less streamflow overall.

"Of all the regions we studied, streamflow from Colorado's Rocky Mountains is most sensitive to changes in snowmelt," said Theodore Barnhart of INSTAAR, lead author of the second study. "This analysis suggests that all the regions studied will experience a decrease in streamflow with a decrease in snowmelt rate, with some regions having more streamflow sensitivity than others."

CU-Boulder's Molotch added that the findings have broad implications for the scientific community.

"Given that 60 million people in the western U.S. depend on snowmelt for their water supply, the future decline in snowmelt-derived streamflow may place additional stress on over-allocated water supplies," he said. "These two studies are reshaping the way scientists -- and land and water managers -- think about climate change in mountain regions."
-end-


National Science Foundation

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...