NSF awards $110 million for advanced cyberinfrastructure to nation's scientists, engineers

August 25, 2016

Today, the National Science Foundation (NSF) announced a $110 million award to the University of Illinois at Urbana-Champaign and 18 partner institutions to continue and expand activities undertaken through the Extreme Science and Engineering Discovery Environment (XSEDE).

A virtual organization that has become the cornerstone of the nation's cyberinfrastructure ecosystem, XSEDE, which received initial NSF funding in 2011, accelerates open scientific discovery and broadens participation in advanced computing by lowering the barriers for researchers, engineers and scholars to use and access computing resources. Under the new five-year award, called XSEDE 2.0, the organization will maintain existing services to its large user community and add innovative elements in response to ever-evolving user demands and supporting technologies.

"XSEDE 2.0 will continue to expand access to NSF-funded cyberinfrastructure resources and services available to the science and engineering community across the nation," said Irene Qualters, director for the Division of Advanced Cyberinfrastructure (ACI) at NSF. "The nation's discovery and innovation enterprise requires a dynamic and highly interoperable ecosystem that can anticipate and respond to new instruments, new computing capabilities, new research communities and new expertise. XSEDE 2.0 is a critical human component in NSF's advanced computing infrastructure strategy, seeking to enable the broad and deep use of computational and data-intensive research to advance knowledge in all fields of study."

The project aligns with the objectives of the National Strategic Computing Initiative (NSCI) -- a whole-of-government effort that fosters a coordinated federal strategy in high-performance computing (HPC) research and deployment. NSF serves as one of the initiative's three lead agencies.

XSEDE 2.0 supports NSCI's goals. These include holistically expanding the capabilities and capacity of a robust and enduring national HPC ecosystem and contributing the educational and workforce development necessary to prepare current and future researchers and technical experts.

Last year, XSEDE provided computational and data services to more than 6,000 scientists, engineers and students. Through its web portal, it supported more than 20,000 users. In the first four years of the project, users acknowledged support by XSEDE and its related computational resources in roughly 14,000 publications. Among these XSEDE-supported studies were efforts that: Under the new phase of funding, XSEDE 2.0 will perform a number of critical functions, including: For nearly four decades, NSF has supported the nation's scientific community by providing cyberinfrastructure beyond the reach of individual academic institutions, enabling transformative research in such diverse areas as particle physics, cosmology, biology, nanotechnology, ecological modeling, economics and civil engineering.

Cyberinfrastructure includes advanced instruments, computing systems, data tools, software, networks and people that collectively improve the research productivity of the nation's computational scientists and engineers. Critically important to this vision of cyberinfrastructure is the dynamic interplay between advanced resources and human developers and users.

"As the role of computational and data science in advancing scientific and engineering frontiers has grown, it has produced a significant increase in the demand for supporting infrastructure," said John Towns, executive director for Science and Technology at the University of Illinois at Urbana-Champaign's National Center for Supercomputing Applications and the principal investigator for XSEDE. "The XSEDE 2.0 project recognizes that investment in physical infrastructure must be complemented by investment in software and human services."
-end-


National Science Foundation

Related Data Articles from Brightsurf:

Keep the data coming
A continuous data supply ensures data-intensive simulations can run at maximum speed.

Astronomers are bulging with data
For the first time, over 250 million stars in our galaxy's bulge have been surveyed in near-ultraviolet, optical, and near-infrared light, opening the door for astronomers to reexamine key questions about the Milky Way's formation and history.

Novel method for measuring spatial dependencies turns less data into more data
Researcher makes 'little data' act big through, the application of mathematical techniques normally used for time-series, to spatial processes.

Ups and downs in COVID-19 data may be caused by data reporting practices
As data accumulates on COVID-19 cases and deaths, researchers have observed patterns of peaks and valleys that repeat on a near-weekly basis.

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.

Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.

Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.

Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.

Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.

Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.

Read More: Data News and Data Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.