Broadly neutralizing HIV antibodies engineered to be better vaccine leads

August 25, 2016

One approach to HIV vaccine development relies on broadly neutralizing antibodies (bnAbs) that protect against different circulating HIV strains. bnAbs have been isolated from HIV-infected individuals, but they are highly evolved and unusual antibodies. A study published on August 25th in PLOS Pathogens reports on a rational approach to identify the essential features of bnAbs, come up with simplified versions that might be more suitable leads for HIV vaccine design, and then use analysis of the simplified bnAbs to guide design of vaccine proteins to elicit similar antibodies.

Broadly neutralizing antibodies, although arising in some HIV-infected individuals, have never been induced by vaccination. This might be because bnAbs are rare, unusual antibodies that result from continuous mutational adaptation driven by the evolution of HIV in the body over time.

Assuming that not all of the characteristics of bnAbs are essential for their desirable functions, Ian Wilson, Dennis Burton, William Schief and colleagues from The Scripps Research Institute and the IAVI Neutralizing Antibody Center in La Jolla, USA, set out to engineer HIV bnAbs with minimized rare features. To quantify the unusual features of the bnAbs, the researchers developed a computational method, which they called the Antibody Features Frequency (AFF) method. It compares the features in the DNA sequence encoding a bnAb with those in a large panel of reference sequences from human memory B cells (the cells that produce antibodies) from multiple healthy donors that had never been infected with HIV.

Applying the AFF to a panel of bnAbs, the researchers found a large (several orders of magnitude) difference in features frequencies between HIV bnAbs and "normal" human memory antibodies. This indicates, they say, "that the known potent HIV bnAbs generally provide poor direct leads to guide HIV vaccine development, because antibodies with similar features are unlikely to be elicitable in a consistent manner". They also conclude "that engineering or discovery of potent HIV bnAbs with higher features frequencies [i.e., fewer rare features] will be needed to focus vaccine efforts toward epitopes targeted by more plausibly inducible potent bnAbs".

The AFF had shown that VRC01, a potent bnAb, was among the most unusual bnAbs, i.e, it shared very few features with normal human antibodies. On the other hand, structural analysis of VRC01 suggested that many of the unusual features might not be necessary for its ability to bind and neutralize HIV. The researchers therefore generated simplified derivatives of VRC01. They tested many candidates for their ability to bind multiple HIV strains, and ended up with two minimally mutated VRC01-class bnAbs with excellent neutralization breadth and whose potency was only slightly or moderately diminished compared to the parental bnAbs.

One of the two engineered antibodies, called Min12A21, has the highest features frequency (i.e., shares more features in common with normal memory antibodies) of all HIV bnAbs examined in this study, while retaining its specificity for HIV (one concern when altering antibodies is always that they might react also against antigens of the human host).

The researchers then divided the minimal mutations into spatial clusters at the interface between the antibody and its viral target protein. Using mutational and structural analyses together with neutralization assays, they determined the mutational steps required to go from antibodies elicited by initial contact with a vaccine to mature antibodies with bnAb activity. They also predicted the variations in the vaccine antigens at each step that might promote such mutations. Putting all of the data together, they proposed a sequential boosting strategy following the initial vaccination to select the mutation clusters in a logical order.

"We have", the researchers summarize, "developed potent HIV bnAbs that may be more tractable vaccine goals compared to existing bnAbs, and we have proposed a strategy to elicit them". Acknowledging that the strategy remains to be tested, they nonetheless suggest that "this reductionist approach to vaccine design, guided by antibody and antigen structure, could be applied to design candidate vaccines for other HIV bnAbs or protective Abs against other pathogens".
In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens:

Please contact if you would like more information.

Funding: This work was supported by the International AIDS Vaccine Initiative Neutralizing Antibody Consortium and Center (WRS, IAW, DRB), a Bill and Melinda Gates Foundation CAVD award during 2006-2011 (WRS) and CAVD funding for the IAVI NAC Center (WRS, IAW, DRB), the Ragon Institute of MGH, MIT and Harvard (DRB and WRS), the Bayer Science and Education Foundation (FS), and National Institute of Allergy and Infectious Diseases grants: P01AI081625 (WRS), CHAVI-ID 1UM1 AI100663 (WRS, IAW, DRB), P01 AI110657 (IAW), and R01 AI084817 (IAW). Use of the Advanced Photon Source for data collection was supported by the DOE, Basic Energy Sciences, Office of Science, under contract no. DE-AC02-06CH11357. GM/CA CAT has been funded in whole or in part with federal funds from NCI (grant Y1-CO-1020) and NIGMS (grant Y1-GM-1104). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: I have read the journal's policy and the authors of this manuscript have the following competing interests: WRS is a co-founder and stock holder in Compuvax, Inc. which has programs in non-HIV vaccine design that might benefit indirectly from this research.

Citation: Jardine JG, Sok D, Julien J-P, Briney B, Sarkar A, Liang C-H, et al. (2016) Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide Reductionist Vaccine Design. PLoS Pathog 12(8): e1005815. doi:10.1371/journal.ppat.1005815


Related HIV Articles from Brightsurf:

BEAT-HIV Delaney collaboratory issues recommendations measuring persistent HIV reservoirs
Spearheaded by Wistar scientists, top worldwide HIV researchers from the BEAT-HIV Martin Delaney Collaboratory to Cure HIV-1 Infection by Combination Immunotherapy (BEAT-HIV Collaboratory) compiled the first comprehensive set of recommendations on how to best measure the size of persistent HIV reservoirs during cure-directed clinical studies.

The Lancet HIV: Study suggests a second patient has been cured of HIV
A study of the second HIV patient to undergo successful stem cell transplantation from donors with a HIV-resistant gene, finds that there was no active viral infection in the patient's blood 30 months after they stopped anti-retroviral therapy, according to a case report published in The Lancet HIV journal and presented at CROI (Conference on Retroviruses and Opportunistic Infections).

Children with HIV score below HIV-negative peers in cognitive, motor function tests
Children who acquired HIV in utero or during birth or breastfeeding did not perform as well as their peers who do not have HIV on tests measuring cognitive ability, motor function and attention, according to a report published online today in Clinical Infectious Diseases.

Efforts to end the HIV epidemic must not ignore people already living with HIV
Efforts to prevent new HIV transmissions in the US must be accompanied by addressing HIV-associated comorbidities to improve the health of people already living with HIV, NIH experts assert in the third of a series of JAMA commentaries.

The Lancet HIV: Severe anti-LGBT legislations associated with lower testing and awareness of HIV in African countries
This first systematic review to investigate HIV testing, treatment and viral suppression in men who have sex with men in Africa finds that among the most recent studies (conducted after 2011) only half of men have been tested for HIV in the past 12 months.

The Lancet HIV: Tenfold increase in number of adolescents on HIV treatment in South Africa since 2010, but many still untreated
A new study of more than 700,000 one to 19-year olds being treated for HIV infection suggests a ten-fold increase in the number of adolescents aged 15 to 19 receiving HIV treatment in South Africa, according to results published in The Lancet HIV journal.

Starting HIV treatment in ERs may be key to ending HIV spread worldwide
In a follow-up study conducted in South Africa, Johns Hopkins Medicine researchers say they have evidence that hospital emergency departments (EDs) worldwide may be key strategic settings for curbing the spread of HIV infections in hard-to-reach populations if the EDs jump-start treatment and case management as well as diagnosis of the disease.

NIH HIV experts prioritize research to achieve sustained ART-free HIV remission
Achieving sustained remission of HIV without life-long antiretroviral therapy (ART) is a top HIV research priority, according to a new commentary in JAMA by experts at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

The Lancet HIV: PrEP implementation is associated with a rapid decline in new HIV infections
Study from Australia is the first to evaluate a population-level roll-out of pre-exposure prophylaxis (PrEP) in men who have sex with men.

Researchers date 'hibernating' HIV strains, advancing BC's leadership in HIV cure research
Researchers have developed a novel way for dating 'hibernating' HIV strains, in an advancement for HIV cure research.

Read More: HIV News and HIV Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to