Nav: Home

Face shape is in the genes

August 25, 2016

Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug. 25 in PLOS Genetics.

Several lines of evidence suggest that a person's facial shape is controlled by one's genes, but scientists don't yet understand how genetic variation contributes to the range of healthy shapes and sizes that human faces take. To identify these variants, scientists performed a genome-wide association study. They looked for associations between 20 facial characteristics measured from 3D images of 3,118 healthy individuals with European ancestry and almost one million single base pair variations called SNPs, located across the genome. Facial width, the distance between the eyes, the size of the nose and the distance between the lips and eyes all had statistically significant associations with certain SNPs. Their analysis also considered results from two earlier genome-wide association studies and confirmed certain previous findings.

Corresponding author, Dr Seth Weinberg says "Our analysis identified several genetic associations with facial features not previously described in earlier genome-wide studies. What is exciting is that many of these associations involve chromosomal regions harboring genes with known craniofacial function. Such findings can provide insights into the role genes play in the formation of the face and improve our understanding of the causal factors leading to certain craniofacial birth defects." Several of the genetic regions contributing to face shape detected by the researchers contain genes known to play a role in facial development and facial abnormalities. In the future, the scientists hope to identify genetic risk factors that lead to anomalies such as cleft lip and palate.

It is important to keep in mind that these findings likely represent only a small fraction of the genes influencing the size and shape of the human face. Because many of the genes influencing facial morphology are likely to have small effects, successfully mapping a large number of these genes will require much greater sample sizes and a more comprehensive approach to quantifying facial features of interest."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Genetics: http://dx.plos.org/10.1371/journal.pgen.1006149

Citation: Shaffer JR, Orlova E, Lee MK, Leslie EJ, Raffensperger ZD, Heike CL, et al. (2016) Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology. PLoS Genet 12(8): e1006149. doi:10.1371/journal. pgen.1006149

Image Credit: John Shaffer and colleagues

Funding: The National Institute for Dental and Craniofacial Research provided funding through the following grants: U01-DE020078 (SMW, MLM); U01-DE020057 (JCM, MLM); R01-DE016148 (MLM, SMW); U01-DE020054 (RAS); U01-DE024425 (MLM); K99-DE02560 (EJL). Funding for genotyping was provided by the National Human Genome Research Institute: X01-HG007821 (MLM, SMW, EF). Funding for initial genomic data cleaning by the University of Washington (CAL and CCL) was provided by contract #HHSN268201200008I from the National Institute for Dental and Craniofacial Research awarded to the Center for Inherited Disease Research (CIDR). Additional funding for was provided by the National Institute of Justice: 2013-DN-BX-K005 (RAS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".