Scripps Florida scientists shed new light on the role of calcium in learning and memory

August 25, 2016

JUPITER, FL - August 25, 2016 - While calcium's importance for our bones and teeth is well known, its role in neurons--in particular, its effects on processes such as learning and memory--has been less well defined.

In a new study published in the journal Cell Reports, scientists from the Florida campus of The Scripps Research Institute (TSRI) offer new insights how calcium in mitochondria--the powerhouse of all cells--can impact the development of the brain and adult cognition.

In particular, the team showed in fruit flies, a widely used model system, that blocking a channel that brings calcium to the mitochondria, called "mitochondrial calcium uniporter," causes memory impairment but does not alter learning capacity.

"When we knocked down the activity of the uniporter, we found that flies have a deficit memory," said Ron Davis, chair of the TSRI's Department of Neuroscience. "Intact uniporter function is necessary for full and complete memory in the adult fly. What surprised us is that they were still able to learn--albeit with a fleeting memory. But we thought they wouldn't be able to learn at all."

The mitochondrial calcium uniporter protein, first identified in 2011, allows calcium ions to move from the cell's interior into mitochondria--like coal moving through a shoot into a furnace room. It is regulated by other proteins known as MICU1, MICU2 and EMRE. Davis noted that human patients with mutations in MICU1 can exhibit learning disabilities.

"The new study's conclusion is that mitochondrial calcium entry during development is necessary to establish the neuronal competency for supporting adult memory," said TSRI Research Associate Ilaria Drago, the first author of the study.

Drago noted the team found evidence that inhibiting mitochondrial calcium uniporter function led to a decrease in the content of synaptic vesicles (miniscule sacs within the cell where various neurotransmitters are stored) and an increase in the length of axons (the slender filaments of neurons).

While these structural problems were clearly observed, she added, what they mean in terms of neuronal development remains tantalizingly unclear. "The discovery of a developmental role for the mitochondrial calcium uniporter complex in regulating memory in adult flies is especially intriguing and deserves more exploration," said Davis.
-end-
The study, "Inhibiting the Mitochondrial Calcium Uniporter during Development Impairs Memory in Adult Drosophila," was supported by the National Institutes of Health (grants R37NS19904 and R01NS052351) and the Iris and Junming Le Foundation.

Scripps Research Institute

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.