Magic enzymes

August 25, 2017

Little fungi pack a punch: "Magic mushrooms" of the Psilocybe species produce psychoactive compounds that alter perception when ingested. Recently, the effects on the neuronal system caused by their ingredient psilocybin have attracted the interest of pharmacologists. German scientists have now identified four of the enzymes responsible for the biosynthesis of psilocybin. In the journal Angewandte Chemie, they describe the biosynthetic pathway and introduce a synthetic route that could form the basis of biotechnological production.

For centuries, Central American cultures considered Psilocybe mushrooms to be divine and used them for spiritual purposes. More recently, they have been called magic mushrooms and used for their hallucinogenic effects. These mushroom drugs may soon also be in use as pharmaceuticals that treat the existential anxiety of advanced-stage cancer patients, depression, and nicotine addiction. Their effects stem from tryptamines, which are chemical derivatives of the amino acid L-tryptophan and structural relatives of the neurotransmitters serotonin and melatonin. Among these, psilocybin is the primary chemical mushroom component. Psilocybin is an inactive precursor that is rapidly activated when consumed: splitting off a phosphate group results in the actual active ingredient, psilocin.

Although the structure of psilocybin has been known for about 60 years, it has not been possible to decode the enzymatic basis of its biosynthesis. Researchers working with Dirk Hoffmeister at the Friedrich Schiller University of Jena have now figured this out. They have identified the four enzymes that transform the amino acidy L-tryptophan into psilocybin. Using genetic technology, the researchers were able to produce the enzymes in bacterial and mould fungi cultures and characterize them.

Based on this knowledge, they were also able to clarify the biosynthetic production route, which is different than previously supposed. In the first step of the biosynthesis, an unsusual type of tryptophan decarboxylase splits the carboxyl group off of the amino acid L-tryptophan. A monooxygenase then introduces an alcohol group, to which a kinase subsequently adds a phosphate group. Finally, a methyl transferase adds two methyl groups stepwise to the amino group.

Starting with 4-hydroxy-L-tryptophan and using three of the four fungal enzymes, the scientists were able to enzymatically synthesize psilocybin by a simple method in a combined reaction. Given the pharmaceutical industry's renewed interest in psilocybin, these results may lay the foundation for its biotechnological production.
-end-
About the Author

Dirk Hoffmeister is Full Professor of Pharmaceutical Microbiology at the University of Jena and the Leibniz Institute for Natural Product Research and Infection Biology (Hans-Knöll-Institute) in Jena. His research focuses on the genetic and biochemical bases of bioactive component synthesis in fungi.

http://www.pharmazie.uni-jena.de/Institut/Pharmazeutische+Mikrobiologie/Prof_+Dr_+Dirk+Hoffmeister.html

Wiley

Related Enzymes Articles from Brightsurf:

Bacilli and their enzymes show prospects for several applications
This publication is devoted to the des­cription of different microbial enzymes with prospects for practical application.

Ancient enzymes can contribute to greener chemistry
A research team at Uppsala University has resurrected several billion-year-old enzymes and reprogrammed them to catalyse completely different chemical reactions than their modern versions can manage.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Cold-adapted enzymes can transform at room temperature
Enzymes from cold-loving organisms that live at low temperatures, close to the freezing point of water, display highly distinctive properties.

How enzymes build sugar trees
Researchers have used cryo-electron microscopy to elucidate for the first time the structure and function of a very small enzyme embedded in cell membranes.

Energized by enzymes -- nature's catalysts
Scientists at Pacific Northwest National Laboratory are using a custom virtual reality app to design an artificial enzyme that converts carbon dioxide to formate, a kind of fuel.

Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

While promoting diseases like cancer, these enzymes also cannibalize each other
In diseases like cancer, atherosclerosis, and sickle cell anemia, cathepsins promote their propagation.

Researchers finally grasp the work week of enzymes
Scientists have found a novel way of monitoring individual enzymes as they chomp through fat.

How oxygen destroys the core of important enzymes
Certain enzymes, such as hydrogen-producing hydrogenases, are unstable in the presence of oxygen.

Read More: Enzymes News and Enzymes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.