Nav: Home

Studying water polo for kicks

August 25, 2020

Tsukuba, Japan - Researchers at the University of Tsukuba used high-speed cameras and pressure sensors to quantify the force created by water polo players during kicking motions. They found that the high efficacy of the "eggbeater" technique exceeds the predictions of conventional biomechanical theories, which may be due to turbulent water flow. This research may help improve our understanding of both the biophysics of sports, as well as lead to new ways to travel through the water more easily.

While polo played with horses may seem genteel and relaxing, the same cannot be said of water polo. It is a grueling competition in which players must constantly expend energy just to stay in a position to catch or throw the ball. A common swimming technique that allows players to tread water while upright is called an "eggbeater" kick, in which the legs make large circles, just like the kitchen gadget. In fact, they spend about half their time in the water performing this motion, which allows players to elevate themselves from the surface without becoming exhausted.

To understand why this method is so efficient, researchers at the University of Tsukuba studied six male water polo players.

"Sports are often a good place to look for highly optimized techniques," Senior author Professor Hideki Takagi says. "We captured the kicking motions using three high-speed cameras, and we attached four pairs of pressure sensors to the dorsal and plantar surfaces of each participant's right foot."

The video recording allowed the scientists to know the position, velocity, and acceleration at each moment of time, and the force could be calculated using the pressure sensors.

Surprisingly, the researchers found that the force created by the eggbeater kick was greater than would be expected if one just applied Newton's laws and hydrodynamics. "Our study hints that water polo players are actually taking advantage of complex physics, including unstable vortices, to achieve this increased efficiency," explains Professor Takagi. "In addition to improving sports performance, the results of this research may lead to optimized underwater propulsion."
-end-


University of Tsukuba

Related Lead Articles:

Silicones may lead to cell death
Silicone molecules from breast implants can initiate processes in human cells that lead to cell death.
Poor diet can lead to blindness
An extreme case of 'fussy' or 'picky' eating caused a young patient's blindness, according to a new case report published today [2 Sep 2019] in Annals of Internal Medicine.
What's more powerful, word-of-mouth or following someone else's lead?
Researchers from the University of Pittsburgh, UCLA and the University of Texas published new research in the INFORMS journal Marketing Science, that reveals the power of word-of-mouth in social learning, even when compared to the power of following the example of someone we trust or admire.
UTI discovery may lead to new treatments
Sufferers of recurring urinary tract infections (UTIs) could expect more effective treatments thanks to University of Queensland-led research.
Increasing frailty may lead to death
A new study published in Age and Ageing indicates that frail patients in any age group are more likely to die than those who are not frail.
Discovery could lead to munitions that go further, much faster
Researchers from the U.S. Army and top universities discovered a new way to get more energy out of energetic materials containing aluminum, common in battlefield systems, by igniting aluminum micron powders coated with graphene oxide.
Shorter sleep can lead to dehydration
Adults who sleep just six hours per night -- as opposed to eight -- may have a higher chance of being dehydrated, according to a study by Penn State.
For the brokenhearted, grief can lead to death
Grief can cause inflammation that can kill, according to new research from Rice University.
Lead or follow: What sets leaders apart?
Leaders are more willing to take responsibility for making decisions that affect the welfare of others.
Taking the lead toward witchweed control
A compound that binds to and inhibits a crucial receptor protein offers a new route for controlling a parasitic plant.
More Lead News and Lead Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.