Plant living with only one leaf reveals fundamental genetics of plant growth

August 25, 2020

Clinging to the walls of tropical caves is a type of plant with a single leaf that continues to grow larger for as long as the plant survives. Researchers at the University of Tokyo hope that their study of this unusual species may help inspire future genetic tools to control the size of common crop plants.

"We are pleased that we finally made a small breakthrough studying this plant," said Professor Hirokazu Tsukaya, who led the recent research project.

The plant's scientific name, Monophyllaea glabra, means "hairless species of one-leaf plant." M. glabra sprouts from a seed with two embryonic leaves called cotyledons, but only one of the cotyledons continues to develop into a leaf.

All Monophyllaea species grow one leaf that, as far as scientists have observed, can continue growing bigger as long as the plant lives. Most plants have no limit on the number of leaves they can grow, but those leaves do have a predetermined maximum size.

Tsukaya first tried working with Monophyllaea in the early 1990s after a trip to see the plants growing in their native habitat in Thailand.

"Monophyllaea like to live in limestone caves in Southeast Asia. If you have a chance to go there, you can see these plants easily," said Tsukaya.

The same curious biology that made the plants so interesting also made them challenging to study with new genetic tools being designed at the time for more common species with immediate agricultural or medical relevance. After a decadeslong hiatus while other molecular techniques developed, the project to understand Monophyllaea began again recently when doctoral student and first author of the research paper Ayaka Kinoshita joined the lab.

"I believe ours is the only lab in the world currently studying this species," said Tsukaya.

Understanding what makes Monophyllaea unique required tools that could see the location and activity level of genes early in the leaf's development. A technique known as whole-mount in situ hybridization allows researchers to preserve whole chunks of an organism, not just thin slices, and lock in place all of the genetic material the cells were using at the time of their death. The technique is commonly used in animal tissue, but is more complicated to use in plants because of the stiff outer cell wall around plant cells.

"Luckily, another of our lab members, Assistant Professor Hiroyuki Koga, is a true professional at using the whole-mount system and he persisted to develop a suitable method for plants," said Tsukaya. Koga is the second author of the research publication and was able to perfect a technique to preserve entire three-week-old Monophyllaea plants.

In plants with standard anatomy, the gene SHOOT MERISTEMLESS (STM) is expressed in cells at the growing tips of stems, referred to as the shoot meristem. Additionally, the gene ANGUSTIFOLIA3 (AN3) is expressed in very young leaves to promote the multiplication of cells that form the leaf.

"With our naked eye, we cannot see any shoot meristem in Monophyllaea. So we want to know, is it lost or is it modified?" explained Tsukaya.

Instead of separating the location and timing of STM and AN3 gene expression, young Monophyllaea showed overlapping expression of the two genes. Researchers say that what looks like a simple leaf in Monophyllaea is actually a combination or fusing of the shoot meristem and leaf.

"In Monophyllaea, the expression areas overlap, suggesting this plant is a hybrid of a normal leaf and shoot meristem. We suppose this curious gene expression pattern is one reason why the plant has such a curious appearance," said Tsukaya.

Researchers state that understanding how unusual species like M. glabra evolved to use common genes in uncommon ways will help agricultural scientists develop tools for controlling the size of leaves for optimal farming cultivation in the future.

"We study M. glabra because the characteristics of Monophyllaea development are very unique and they cannot be found in any mutants of common laboratory plants. Dealing with the unique phenomenon can definitely provide new insights to plant science," said Tsukaya.
-end-
Research Publication

Kinoshita, A., Koga, H. and Tsukaya, H. (12 August 2020). Expression profiles of ANGUSTIFOLIA3 and SHOOT MERISTEMLESS, key genes for meristematic activity in a one-leaf plant Monophyllaea glabra, revealed by whole-mount in situ hybridization. Frontiers in Plant Science. DOI: 10.3389/fpls.2020.01160

https://www.frontiersin.org/articles/10.3389/fpls.2020.01160/full

Related Links

Graduate School of Science: https://www.s.u-tokyo.ac.jp/en/

Tsukaya Lab: http://www.bs.s.u-tokyo.ac.jp/~bionev2/en/index.html

Research contact

Professor Hirokazu Tsukaya
Graduate School of Science, The University of Tokyo, Science Building #2, 7-3-1, Hongo, Tokyo 113-0033, Japan
Tel: +81-03-5841-4047
Email: tsukaya@bs.s.u-tokyo.ac.jp

Press officer contact

Ms. Caitlin Devor
Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-8654, JAPAN
Tel: +81-080-9707-8178
E-mail: press-releases.adm@gs.mail.u-tokyo.ac.jp

Funders

Grant-in-Aid for JSPS Fellows (AK, #19J14140), a Grand-in-Aid for Scientific Research on Innovation Areas (#25113002 and 19H05672) from Ministry of Education, Culture, Sports, Science and Technology of Japan and the Graduate Program for Leaders in Life Innovation (GPLLI)/World-leading Innovative Graduate Study Program for Life Science and Technology (WINGS-LST) of the University of Tokyo.

University of Tokyo

Related Plants Articles from Brightsurf:

When plants attack: parasitic plants use ethylene as a host invasion signal
Researchers from Nara Institute of Science and Technology have found that parasitic plants use the plant hormone ethylene as a signal to invade host plants.

210 scientists highlight state of plants and fungi in Plants, People, Planet special issue
The Special Issue, 'Protecting and sustainably using the world's plants and fungi', brings together the research - from 210 scientists across 42 countries - behind the 2020 State of the World's Plants and Fungi report, also released today by the Royal Botanic Gardens, Kew.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

How do plants forget?
The study now published in Nature Cell Biology reveals more information on the capacity of plants, identified as 'epigenetic memory,' which allows recording important information to, for example, remember prolonged cold in the winter to ensure they flower at the right time during the spring.

The revolt of the plants: The arctic melts when plants stop breathing
A joint research team from POSTECH and the University of Zurich identifies a physiologic mechanism in vegetation as cause for Artic warming.

How plants forget
New work published in Nature Cell Biology from an international team led by Dr.

Ordering in? Plants are way ahead of you
Dissolved carbon in soil can quench plants' ability to communicate with soil microbes, allowing plants to fine-tune their relationships with symbionts.

When good plants go bad
Conventional wisdom suggests that only introduced species can be considered invasive and that indigenous plant life cannot be classified as such because they belong within their native range.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Can plants tell us something about longevity?
The oldest living organism on Earth is a plant, Methuselah a bristlecone pine (Pinus longaeva) (pictured below) that is over 5,000 years old.

Read More: Plants News and Plants Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.