Nav: Home

Three-dimensional quantum Hall effect and global picture of edge states in Weyl semimetals

August 25, 2020

Since Von Klitzing discovered the quantum Hall effect in a two-dimensional electron gas system in 1980, there has been theoretical work discussing how to quantize the Hall conductance in a three-dimensional system. In a three-dimensional system, electrons form Landau levels in the directions perpendicular to the magnetic field, whereas own continuous dispersion along the direction of the magnetic field. Therefore, no matter where the Fermi energy is located, there will always be bulk electrons participating in the transport, resulting in the failure to make the Hall conductance quantized. However, the types of topological materials are gradually enriched in recent years, providing new ideas to realize the three-dimensional quantum Hall effect.

In recent years, the three-dimensional quantum Hall effect in topological semimetals has attracted extensive attention. In 2017, Professor Lu Haizhou's group from Southern University of Science and Technology and Professor Xie Xincheng's group from Peking University proposed a new mechanism to realize the three-dimensional effect in topological semimetals with the combination of the Fermi arcs at opposite surfaces. However, for this new three-dimensional quantum Hall effect, the physical picture of the edge states, how the edge states evolve and form a closed trajectory, and how it is affected by a tilted magnetic field is still missing. Recently, Professor Xie and his collaborators investigate the three-dimensional quantum Hall effect in Weyl semimetals and elucidate a global picture of the edge states. This work has been published in Physical Review Letters [Phys. Rev. Lett. 125, 036602.].

Weyl semimetals are three-dimensional topological quantum materials of which bulk energy bands are gapped except for an even number of points in the momentum space, named Weyl nodes. At some surfaces of a Weyl semimetal, there exist topologically protected surface states, so-called Fermi arcs. The Fermi arcs on the top and the bottom surfaces of the Weyl semimetal form a complete two-dimensional electron gas via Weyl nodes. In the presence of a magnetic field, bulk electrons form chiral Landau bands with linear dispersion along the direction of the magnetic field. Through the analysis of the semi-classical equations of motion of electrons and numerical simulations of the transport, they stated that in the bulk or topologically trivial side surfaces, electrons connect the top and the bottom surfaces via chiral Landau states; on the topologically non-trivial side surfaces, electrons connect the top and the bottom surfaces via Fermi-arc surface states, thereby forming a closed trajectory (see Figure.(a)). When the Fermi level is located at the Weyl node, the Hall conductance shows quantized plateaus.

In addition, under a tilted magnetic field, chiral Landau bands will affect the spatial distribution of the edge states, and the resulting edge states will lead to distinctive Hall transport phenomena. A tilted magnetic field contributes to an intrinsic Hall conductance, and such an intrinsic value only depends on the tilting angle of the magnetic field and the properties of the Weyl semimetal. In particular, they also predicted that there is a critical angle of tilted magnetic fields. When the tilting angle of the magnetic field exceeds the critical angle, the Hall conductance will change its sign with an abrupt spatial shift of the edge states. This study uncovers the physical picture of the three-dimensional quantum Hall effect in Weyl semimetals and relates it to the topological properties of Weyl semimetals.
Li Hailong, a Ph.D. candidate in Professor Xie's group, is the first author, and both Professor Xie and Professor Jiang Hua from Soochow University are the corresponding authors of this paper. Other collaborators include Professor Liu Haiwen from Beijing Normal University. This work is financially supported by the National Natural Science Foundation of China.

Peking University

Related Magnetic Field Articles:

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.
Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.