Nav: Home

New tool for identifying endangered corals could aid conservation efforts

August 25, 2020

Coral conservation efforts could get a boost from a newly developed genotyping "chip"--the first of its kind for corals. The chip allows researchers to genetically identify corals and the symbiotic algae that live within the coral's cells, a vital step for establishing and maintaining genetic diversity in reef restoration efforts. The chip and its accompanying online analysis pipeline help to democratize the genetic identification of coral biodiversity, making it accessible to conservation biologists who might not have access to the laboratory and computational resources needed to extract DNA and analyze the data.

A paper describing the new chip appears in the journal Scientific Reports.

"Corals around the world are endangered due to warming oceans," said Iliana Baums, professor of biology at Penn State and leader of the research team. "We designed this genotyping chip to help restoration and conservation efforts. There is very little overhead needed to use the chip, so small restoration operations can access coral genetic identification to help them maximize reef health by ensuring coral populations are genetically diverse."

The chip, also called a microarray, uses more than 30,000 single nucleotide polymorphisms (SNPs)--locations in the coral genome where at each of the locations a single letter in the DNA alphabet can vary among different corals in the Acroporid family. The Acroporid family of corals contains the largest number of different species of any coral family and are common in the Caribbean Sea and the Pacific Ocean. The chip was designed using Caribbean corals but can also be used to analyze Pacific species and allows researchers to identify the symbiotic algae that reside in the coral cells.

Corals can reproduce asexually by fragmentation, so Caribbean reefs are often dominated by corals that all can be traced back to a single origin and are therefore genetically nearly identical--researchers refer to these related corals as a "genet." The chip is sensitive enough to allow researchers to reliably distinguish members of different genets within the same coral species.

"One way to increase genetic diversity in a reef is to make sure it is built by individuals of more than one genet," said Baums. "Because all of the corals on a reef could be members of the same genet, it is vital to have a reliable way to identify them and our chip provides this to researchers in the field."

To use the SNP chip, which was developed at Penn State and licensed to Thermo Fisher Scientific who produces the Affymetrix microarrays, researchers can simply send a sample of coral to a commercial laboratory. At the lab, DNA is extracted and run on the chip and the resulting data is returned to the researcher. The researcher can then upload the data files into the online analysis pipeline called the Standard Tools for Acroporid Genotyping (STAG). The analysis is performed and data maintained in a customized "Science Gateway" in the open-source web-based Galaxy platform, a resource for data-rich biomedical research also developed at Penn State.

"With the SNP chip and STAG pipeline we can help ensure that researchers around the world can genetically identify corals in a standardized way," said Baums. "The database maintained in the Science Gateway allows researchers to compare samples, identify novel strains, and track coral diversity through time."
In addition to Baums, the research team includes Sheila A. Kitchen, who designed the chip, Greg Von Kuster, Kate L. Vasquez Kuntz, Hannah G. Reich, and Webb Miller at Penn State; Sean Griffin at the NOAA Restoration Center; and Nicole D. Fogarty at the University of North Carolina Wilmington. The research was funded by the NOAA Office for Coastal Management and the U.S. National Science Foundation.

Penn State

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.