'Space-Capsule' Computing Concept May Unlock Petaflops Power, UD Researchers Report

August 25, 1997

August 25, 1997--A new computing concept--patterned after successful space missions--may soon help University of Delaware researchers complete the architectural blueprint for a supercomputer 1 million times more powerful than the most advanced personal computer now on the market.

Capable of processing 1 million billion commands or "floating point operations" per second, the world's first "petaflops" machine may feature superconducting microprocessors, three-dimensional holographic data storage, advanced semiconductor memory and optical interconnections. But first, researchers must figure out how to compensate for the fact that the machine's processing chips will work much faster than its memory.

The space-capsule computing concept should help bridge this technological gap, says Guang R. Gao, director of UD's growing Computer Architecture and Parallel Systems Laboratory (CAPSL) and a leading expert on the "multi-threaded program model," a processing strategy gaining increasing attention from high-performance chip and system designers. Gao introduced his research team's latest findings during the national Hybrid Technology Multi-threaded (HTMT) Architecture workshop, held at UD July 20-21.

How does the concept work? The key, Gao says, is to prepare "parallel computational threads--essentially, many independent instruction pathways--within the machine's lower-level memory hierarchy." The brain of a multi-threaded petaflops computer, a series of processors powered by superconducting materials that lose all resistance to electricity when deeply chilled, would execute many different tasks in turn, Gao explains. Unfortunately, these superconducting processors might run into problems when gathering information from many different sites within the computer's deep-memory hierarchy, such as the optical memory unit or the dynamic random access memory (D-RAM) region. Different types of data therefore must be converted into a single "capsule" or parcel of information, Gao says.

In other words: "You stock your capsule with all the information needed by the processors before launching it into the superconducting region," Gao says. "If you launch the information without preparing it first, the execution of tasks will almost certainly be interrupted while the processor fetches what it needs from different sites." After all, "if the Mars rover had been sent into space without all the proper equipment," Gao notes, "that mission would have been a disaster!"

For handling large, non-regular problems ranging from real-time weather forecasting and biochemical modeling to simulations of complex systems such as aircraft, a petaflops computer may prove essential, says Kevin B. Theobald, one of a half-dozen graduate students and postdoctoral associates in Gao's lab. Gao's work "is a critical path element in the success of the HTMT project," says researcher Thomas Sterling of the Jet Propulsion Laboratory (JPL) in Pasadena, Calif., principal investigator for the HTMT project and one of three visionaries to propose a petaflops machine in 1995.

Resulting from a study funded by the National Science Foundation and the National Aeronautics and Space Administration (NASA), the HTMT project is now sponsored by the Defense Advanced Research Project Agency (DARPA), the National Security Administration (NSA) and NASA. Gao's lab will receive $800,000 over the next several years to develop the architectural blueprint for a petaflops computer. Along with UD, the HTMT project includes the California Institute of Technology and JPL, the State University of New York at Stony Brook, Notre Dame University, Princeton University, and government and industry labs.

The UD team members are system-design veterans who previously developed a high-performance, multi-threaded, multi-processor system known as EARTH (Efficient Architecture for Running Threads)--a project directed by Gao at McGill University in Montreal, where he taught before joining the UD faculty in 1996. The EARTH platform is built atop a 20-node, 40-processor parallel machine called MANNA (Massively parallel Architecture for Numerical and Non-numerical Applications), contributed by the GMD-First computer firm of Berlin, Germany. Doctoral student Andres Marquez, who helped design the memory system for the MANNA, is now part of the UD team and one of the lead designers for the HTMT project, Gao notes.

The EARTH system also can run on the IBM SP-2 parallel computer, thanks to support from C.J. Tan and others at IBM's T.J. Watson Research Center. Tan, senior manager in charge of IBM's Deep Blue chess project, will be speaking at UD on Oct. 21.

University of Delaware

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.