Unique structures in molybdenum blue solutions reveal possible new solute state

August 26, 2002

UPTON, NY -- For nearly 200 years, scientists have known that the elements molybdenum and oxygen can form various large molecules, which usually impart a unique blue color to aqueous solutions. Only recently have scientists been able to isolate these molecules, but no one was able to explain their supramolecular structure in solution, until now. In a paper scheduled to appear in an upcoming issue of the Journal of the American Chemical Society (available online August 20), Tianbo Liu, a physicist at the U.S. Department of Energy's Brookhaven National Laboratory, describes the unique "blackberry" structure, which may represent a new, stable solute state never seen before.

"The nature of 'molybdenum blue solutions' has remained a fascinating enigma for inorganic chemists since the late 1700s and early 1800s," said Liu. In 1826, scientists discovered the first so-called polyoxomolybdate (POM) molecules with a chemical formula of Mo5O14, and realized that the electronic state of the molybdenum atoms was responsible for the blue color in solution. However, the molybdenum blue solutions contained many more complicated molecules. For a long time, scientists were unable to isolate these molecules.

Recently, however, scientists have isolated several different polyoxomolybdate molecules from various molybdenum blue solutions -- all "giant" compared to other inorganic molecules (see http://www.bnl.gov/bnlweb/pubaf/pr/2002/bnlpr_spotlights_2002.htm). Unlike other water-soluble inorganic compounds, such as common table salt (NaCl), giant POMs do not exist as single ions in water. Instead, they cluster together. But scientists were still unable to understand the structures of these aggregates, even with the help of electronic microscopes.

Now, using static and dynamic laser light scattering -- techniques formerly reserved for larger particles and polymers -- Liu has deciphered the structure of these inorganic POM clusters. "Once we found how big these molecules were [2.5-5.1 nanometers, or billionths of a meter, aggregating in clusters as large as 70-300 nanometers], we realized we could use laser light scattering to decipher the structure," said Liu.

The laser light scattering technique works similar to the way we see objects by looking at the light that bounces off of them, except that the scientists use highly focused laser light and detectors that can "see" details on a much smaller scale than the human eye.

Using these techniques Liu was able to determine the radius of the individual particles and the particle clusters, the size distribution of the clusters, how far from the center the mass of the clusters is distributed, and the mass of the clusters. Putting all these pieces together, Liu has concluded that hundreds of individual POM molecules form hollow, spherical clusters, where all of them are clustered around the surface of the sphere.

Yet this solution to the structural enigma has now opened another mystery, says Liu. "What is the new physics behind this structure?" he asks. Unlike sodium and chloride ions, which distribute evenly in solution, or larger, charged particles like DNA or proteins, which form large clusters and precipitate out, POMs form stable clusters and remain in solution.

"We believe we are seeing a new, thermodynamically stable state for solutes, where large-size, single molecules with a limited amount of charge on the surface will all form hollow spherical clusters," says Liu. The hollow vesicle structure allows the particles to remain suspended. Liu likens the new structure to a blackberry.

"We are still looking for theoretical explanations for the new solute state," says Liu. He has found that some other giant molecules with different shapes also adopt this new structure in solution, suggesting that the hollow spherical structure may be a universal state for certain solutes.
This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields.

The U.S. Department of Energy's Brookhaven National Laboratory (www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

Note to local editors: Tianbo Liu lives in Coram, New York.

DOE/Brookhaven National Laboratory

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.