K-State eye researchers focus on stopping spread of damaged eye cells

August 26, 2005

MANHATTAN, KAN. -- A team of four eye researchers at Kansas State University is examining how cells communicate. They hope to prevent the spread of damaged cells that, in some cases, leads to blindness.

Delores Takemoto, professor of biochemistry, said the team's research is concentrating on the gap junctions made of proteins that connect the cells in the eye, allowing the passing of communication.

"All of the communication that's going to occur in the eye has got to go, not through a blood cell, but through gap junctions," Takemoto said. "With two different cells trying to communicate, normally cells have a blood supply to send nutrients from one cell to the other. For cells that don't have that, you have to have one cell having little junctions of proteins connecting to the other cell, and things will pass from one cell to another, allowing communication back and forth."

If one cell becomes damaged, the gap junction acts as a bridge to its neighboring cell, damaging it as well, Takemoto said. The damage continues to spread, leading to severe eye damage if the gap junctions are not closed off.

"What we're working on is ways to close that gap junction and prevent that spread," Takemoto said. "What you have to do is design chemicals that will hit those proteins and make them close instead of having them open. There's two ways you can do that: You can either make the gap junction close, or you can pull the proteins away from the cells so they're not communicating."

Takemoto said research is currently being done to develop a chemical that would stop the spread of damaged cells, but the main concern for scientists is the process of injecting the chemical into the eye without causing damage to the retina.

"There is no blood supply that's common in the eye," she said. "The eye and the brain are what we call a blood-brain barrier or a blood-ocular barrier. The blood supply in the rest of the body doesn't mix with the blood supply in the rest of the brain or the eye -- they're completely separate. If you were to inject something into somebody's bloodstream, it would never get into the eye.

"One of the things we're working on is a delivery mechanism to put things into the eye by injecting them," Takemoto said. "Any time you stick a needle into the eye, you can get retinal detachment. They have to continue to find ways to get things past that blood-ocular barrier. That's the big thing in eye research right now. We know how to treat things; it's just getting it into the eye without having to inject it."

The research is funded by two grants from the National Eye Institute. While the team, in the past several years, has published its studies on the metabolic issues concerning the prevention of continual cell damage, Takemoto said its primary focus has shifted to the injection methods.

"I think it would be extremely big to get something into the eye by the injection of something intravenously," she said. "Overall, there's not much being done right now on delivery to cross the blood-ocular level. That's really in its infant technology right now. So, I think it would be very significant if we can get this done."

Team members also include K-State's Harriet Davidson, professor of clinical sciences; John Tomich, professor of biochemistry; and Larry Takemoto, university distinguished professor of biology.
-end-


Kansas State University

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.