UK researchers release draft sequence coverage of wheat genome

August 26, 2010

A team of UK researchers, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), has publicly released the first sequence coverage of the wheat genome. The release is a step towards a fully annotated genome and makes a significant contribution to efforts to support global food security and to increase the competitiveness of UK farming.

The genome sequences released comprise five read-throughs of a reference variety of wheat and give scientists and breeders access to 95% of all wheat genes. This is among the largest genome projects undertaken, and the rapid public release of the data is expected to accelerate significantly the use of the information by wheat breeding companies.

The team involved Prof Neil Hall and Dr Anthony Hall at the University of Liverpool, Prof Keith Edwards and Dr Gary Barker at the University of Bristol and Prof Mike Bevan at the John Innes Centre, a BBSRC-funded Institute.

Prof Edwards said: "The wheat genome is five times larger than the human genome and presents a huge challenge for scientists. The genome sequences are an important tool for researchers and for plant breeders and by making the data publicly available we are ensuring this publicly funded research has the widest possible impact."

Universities and Science Minister David Willetts said: "This is an outstanding world class contribution by the UK to the global effort to completely map the wheat genome. By using gene sequencing technology developed in the UK we now have the capability to improve the crops of the future by simply accelerating the natural breeding process to select varieties that can thrive in challenging conditions."

The genome data released are in a 'raw' format, comprising sequence reads of the wheat genome in the form of letters representing the genetic 'code'. A complete copy of the genome requires further read-throughs, significant work on annotation and the assembly of the data into chromosomes. Large-scale, rapid sequencing programmes such as this have been made technically feasible by advanced technology genome sequencing platforms, including one based on BBSRC-funded research conducted in the UK in the 1990s.The majority of the sequencing work for this particular project was done using the 454 Life Science platform, developed in the US.

Prof Hall said: "The genome sequence data of this reference variety, Chinese Spring wheat, will now allow us to probe differences between varieties with different characteristics. By understanding the genetic differences between varieties with different traits we can start to develop new types of wheat better able to cope with drought, salinity or able to deliver higher yields. This will help to protect our food security while giving UK plant breeders and farmers a competitive advantage."

The sequence data can be used by scientists and plant breeders to develop new varieties through accelerated conventional breeding or other technologies.

Prof Bevan, a member of the Coordinating Committee of the International Wheat Genome Sequencing Consortium, said: "The sequence coverage will provide an important foundation for international efforts aimed at generating a complete genome sequence of wheat in the next few years."

Prof Doug Kell, BBSRC Chief Executive, said: "Recent short-term price spikes in the wheat markets have shown how vulnerable our food system is to shocks and potential shortages. The best way to support our food security is by using modern research strategies to understand how we can deliver sustainable increases in crop yields, especially in the face of climate change. Genome sequencing of this type is an absolutely crucial strategy, building on previous BBSRC-funded work. Knowledge of these genome sequences will now allow plant breeders to identify the best genetic sequences to use as markers in accelerated breeding programmes."

Dr Jane Rogers, Member of the Coordinating Committee of the International Wheat Genome Sequencing Consortium and Director of BBSRC's The Genome Analysis Centre, said: "The public release of the wheat genome data will be a useful resource for scientists and the plant breeding community and will provide a foundation to identify genetic differences between wheat varieties. In recent years genomics technology has advanced to a point that scientists can now produce sequence data for plants with genomes as large as wheat at a rate unimaginable a few years ago. This is an impressive achievement, notwithstanding the significant hurdles we still face to fully interpret and understand the data."

A key feature of this research has been the quick release of the data into the public domain to allow other scientists and wheat breeding companies to rapidly employ it in practical applications. Richard Summers, Vice Chairman of the British Society of Plant Breeders, said: "The wheat breeding community has been greatly impressed with the collaborative approach taken in this project. The team brought together world class skills in sequencing and wheat genetics to deal with a major barrier in wheat breeding. This is an excellent example of how to achieve technology transfer from research lab through to practical deployment."
-end-
BBSRC is a partner in Global Food Security, a multi-agency programme that brings together the food-related research interests of Research Councils, Government Departments and Executive Agencies.

Biotechnology and Biological Sciences Research Council

Related Genome Sequencing Articles from Brightsurf:

Tracking the SARS-CoV-2 virus with genome sequencing
Dirk Dittmer, PhD, professor of microbiology and immunology at the UNC School of Medicine, is tracking the virus that causes COVID-19 by sequencing the genome of virus samples collected from diagnostic testing.

Genome sequencing accelerates cancer detection
Recent cancer studies have shown that genomic mutations leading to cancer can occur years, or even decades, before a patient is diagnosed.

Whole genome sequencing reveals genetic structural secrets of schizophrenia
UNC School of Medicine scientists have conducted the largest-ever whole genome sequencing study of schizophrenia to provide a more complete picture of the role the human genome plays in this disease.

Using whole-genome sequencing for early identification and containment of AMR pathogens
A study published today examines the evolutionary and epidemiologic history of an epidemic strain of extensively drug-resistant tuberculosis (XDR-TB) -- called LAM4/KZN.

Whole genome sequencing could help save pumas from inbreeding
The first complete genetic sequences of individual mountain lions point the way to better conservation strategies for saving threatened populations of the wild animals.

Researchers move beyond sequencing and create a 3D genome
St. Jude Children's Research Hospital scientists have taken whole genome sequencing to the next level by creating a 3D map of the genome to better understand development and disease.

Clinical utility of rapid whole genome sequencing in neonates with seizures
Clinical utility of rWGS in the evaluation of neonatal seizures.

Viral genome sequencing in the heart of a Lassa outbreak
The first researchers to deploy a mobile nanopore sequencing technology to evaluate viral genomics at the height of a Lassa virus outbreak in 2018 now report their results.

New era for blood transfusions through genome sequencing
In a new study, investigators from Brigham and Women's Hospital and Harvard Medical School, as well as from the New York Blood Center have leveraged the MedSeq Project -- the first randomized trial of whole genome sequencing in healthy adults -- to develop and validate a computer program that can comprehensively and cost-effectively determine differences in individuals' blood types with more than 99 percent accuracy.

Does genome sequencing increase downstream costs?
The MedSeq Project, led by investigators at Brigham Women's Hospital, is the first randomized trial to provide whole genome sequencing to both presumably healthy patients as well as those with a known cardiology issue.

Read More: Genome Sequencing News and Genome Sequencing Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.