Nav: Home

£5.4 million for research to discover next-generation biomaterials

August 26, 2015

A new £5.4 million grant for research aimed at accelerating the discovery and application of new advanced materials in healthcare was announced today by the Engineering and Physical Sciences Research Council (EPSRC).

The grant, awarded to Professor Morgan Alexander at the University of Nottingham, will support a programme, Next Generation Biomaterials Discovery.

Professor Alexander will head a multidisciplinary team spanning Engineering, Science and Medical faculties at Nottingham that will collaborate with leading international groups to realise the vision of materials discovery in 3D, while aiming to keep the UK ahead in the global materials competition. The University of Nottingham has also committed a £1.1 million contribution to the research.

Professor Alexander said: "Advanced biomaterials are essential components in targeting infectious diseases and cancers, realising the potential of regenerative medicine and the medical devices of the future.

"We aim to move beyond the existing limited range of generic bioresorbable polymeric drug and cell delivery agents to bespoke materials identified to function for specific applications."

Defining the chemistry, stiffness, topography and shape of materials can control the response of cells to them. The programme at Nottingham will focus on producing and testing large libraries of these attributes in the form of patterned surfaces, particles and more complex architectures. New materials will be identified for application in the areas of targeted drug delivery, regenerative medicine and advanced materials for next generation medical devices.

The team will also investigate and develop materials that can work around the abilities of bacteria and microbes to sense and signal to each other. This could have application in the field of antimicrobial resistance.

Minister for Life Sciences George Freeman said: "From regenerative medicine through to the next generation of cutting-edge medical devices, biomaterials will be essential components of 21st Century healthcare. This £5.4 million government investment will help researchers at the University of Nottingham to develop ground breaking new techniques that will speed up the discovery and application of these increasingly important materials."

Professor Philip Nelson, EPSRC's Chief Executive, said: "The development of new advanced materials is vital to extending our capabilities across a wide range of scientific disciplines. The work planned as part of this programme grant promises to find new materials that will have many applications in the healthcare sector. This grant will support some of the UK's talented scientists and help achieve EPSRC's vision to make the UK the best place in the world to research, discover and innovate."
-end-
For further information please contact the EPSRC Press Office on 01793 444 404 or email pressoffice@epsrc.ac.uk

Notes for Editors:

The Engineering and Physical Sciences Research Council (EPSRC)

As the main funding agency for engineering and physical sciences research, our vision is for the UK to be the best place in the world to Research, Discover and Innovate.

By investing £800 million a year in research and postgraduate training, we are building the knowledge and skills base needed to address the scientific and technological challenges facing the nation. Our portfolio covers a vast range of fields from healthcare technologies to structural engineering, manufacturing to mathematics, advanced materials to chemistry. The research we fund has impact across all sectors. It provides a platform for future economic development in the UK and improvements for everyone's health, lifestyle and culture.

We work collectively with our partners and other Research Councils on issues of common concern via Research Councils UK. http://www.epsrc.ac.uk

Engineering and Physical Sciences Research Council

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
More Engineering News and Engineering Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...