Nav: Home

£5.4 million for research to discover next-generation biomaterials

August 26, 2015

A new £5.4 million grant for research aimed at accelerating the discovery and application of new advanced materials in healthcare was announced today by the Engineering and Physical Sciences Research Council (EPSRC).

The grant, awarded to Professor Morgan Alexander at the University of Nottingham, will support a programme, Next Generation Biomaterials Discovery.

Professor Alexander will head a multidisciplinary team spanning Engineering, Science and Medical faculties at Nottingham that will collaborate with leading international groups to realise the vision of materials discovery in 3D, while aiming to keep the UK ahead in the global materials competition. The University of Nottingham has also committed a £1.1 million contribution to the research.

Professor Alexander said: "Advanced biomaterials are essential components in targeting infectious diseases and cancers, realising the potential of regenerative medicine and the medical devices of the future.

"We aim to move beyond the existing limited range of generic bioresorbable polymeric drug and cell delivery agents to bespoke materials identified to function for specific applications."

Defining the chemistry, stiffness, topography and shape of materials can control the response of cells to them. The programme at Nottingham will focus on producing and testing large libraries of these attributes in the form of patterned surfaces, particles and more complex architectures. New materials will be identified for application in the areas of targeted drug delivery, regenerative medicine and advanced materials for next generation medical devices.

The team will also investigate and develop materials that can work around the abilities of bacteria and microbes to sense and signal to each other. This could have application in the field of antimicrobial resistance.

Minister for Life Sciences George Freeman said: "From regenerative medicine through to the next generation of cutting-edge medical devices, biomaterials will be essential components of 21st Century healthcare. This £5.4 million government investment will help researchers at the University of Nottingham to develop ground breaking new techniques that will speed up the discovery and application of these increasingly important materials."

Professor Philip Nelson, EPSRC's Chief Executive, said: "The development of new advanced materials is vital to extending our capabilities across a wide range of scientific disciplines. The work planned as part of this programme grant promises to find new materials that will have many applications in the healthcare sector. This grant will support some of the UK's talented scientists and help achieve EPSRC's vision to make the UK the best place in the world to research, discover and innovate."
-end-
For further information please contact the EPSRC Press Office on 01793 444 404 or email pressoffice@epsrc.ac.uk

Notes for Editors:

The Engineering and Physical Sciences Research Council (EPSRC)

As the main funding agency for engineering and physical sciences research, our vision is for the UK to be the best place in the world to Research, Discover and Innovate.

By investing £800 million a year in research and postgraduate training, we are building the knowledge and skills base needed to address the scientific and technological challenges facing the nation. Our portfolio covers a vast range of fields from healthcare technologies to structural engineering, manufacturing to mathematics, advanced materials to chemistry. The research we fund has impact across all sectors. It provides a platform for future economic development in the UK and improvements for everyone's health, lifestyle and culture.

We work collectively with our partners and other Research Councils on issues of common concern via Research Councils UK. http://www.epsrc.ac.uk

Engineering and Physical Sciences Research Council

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...