Moth takes advantage of defensive compounds in Physalis fruits

August 26, 2016

Insects versus plants in the evolutionary arms race: specialists and generalists

In order to survive and to repel herbivores, many plants defend themselves by producing toxic or deterrent substances. In the course of evolution, many insects have succeeded in adapting to the defensive chemistry of their host plants and thereby circumventing plants' defense mechanisms. However, the plants have also adapted their defensive system to further protect themselves against their enemies, which, in turn, generated counter-adaptations in the insects; biologists refer to this phenomenon as an "evolutionary arms race" between plants and insects. Many insects are plant pests which can be categorized as "specialists" and "generalists". Whereas generalists feed on many different plants, specialists have adapted to one or few closely related plant species as their food. The moth species Heliothis subflexa analyzed in this new study is such a host specialist.

Withanolides provide H. subflexa with direct and indirect protection

The researchers measured and compared the effects of withanolides on relative weight gains, survival rates and the immune status in two moth species: the specialist Heliothis subflexa and the generalist Heliothis virescens. They knew from earlier studies that the specialist moth possesses a weaker immune response compared to the closely related generalist. "We were surprised to find that only Heliothis subflexa benefits from withanolides by increasing larval growth and immune system activity, but not its close relative, Heliothis virescens," says Hanna M. Heidel-Fischer, the leader of the study.

Furthermore, the research team from the Department of Entomology found that withanolides protect the specialist, but not the generalist, from the growth-suppressive effects of an infection caused by the bacterial pathogen Bacillus thuringiensis. "Larvae of Heliothis subflexa could theoretically profit in two ways from Physalis fruits: First, withanolides display antibacterial and immune stimulant activity. Furthermore, the Physalis fruit is covered by a calyx that creates a so-called enemy-free space," concludes co-author Heiko Vogel.

Physalis: A plant with promising properties

Plants of the genus Physalis, also known as ground cherries, have a long history as a medicinal herb in India and the Middle East. The medicinal importance of Physalis plants is mainly due to the presence of steroidal lactones, the withanolides. Withanolides exhibit potential anti-cancer, anti-inflammatory and apoptotic activities. However, the actual role of withanolides in Physalis plants is defense against herbivores. Withanolides have been shown to be potent anti-feeding deterrents as well as immunosuppressants in insects. These effects can be attributed to possible interactions of withanolides with signal transduction pathways in the cells. For instance, previous studies have shown that withanolides may cause molting disorders in insects, suggesting that the anti-feeding and immunosuppressive effects arise from the disruptive effect of withanolides on the development of non-adapted insects. These toxic effects of withanolides on herbivorous insects suggest an adaptive benefit, since few insect species are known to feed on Physalis plants with impunity.

Heliothis subflexa: A Physalis specialist

Larvae of the Heliothis subflexa moth are probably best known for their ability to feed on Physalis plants, a plant genus that includes species also attractive to humans, such as the cape gooseberry and tomatillo. In contrast to their close relative Heliothis virescens, a generalist that feeds on at least 14 different plant families but not on Physalis, Heliothis subflexa larvae feed exclusively on Physalis fruits, and it is the only Heliothis species to do so. Physalis fruits are enclosed by a thin-walled, inflated calyx called a "lantern". The lantern provides a so-called enemy-free space for fruit-feeding larvae of Heliothis subflexa, which could be demonstrated in earlier studies. However, the impact of withanolides on specialized Heliothis subflexa had not been evaluated prior to this study. With the known immunosuppressive properties of withanolides in mind, the researchers aimed to examine the specialization of Heliothis subflexa on Physalis in the context of ecological immunology. "Ecological immunology combines classical studies of the immune system with an ecological perspective to evaluate the costs and benefits of defense against pathogens in the natural environment, and the manner in which natural selection shapes the immune system," explains Andrea Barthel, the first author of the publication. Further studies will now focus on the mechanism by which the specialist moth circumvents plant defenses. Moreover, experiments are planned to elucidate the effect withanolides have on the bacterial communities on the plant surface as well as in the gut of the specialist insect. [AB/HHF/AO]
-end-
Original Publication:

Barthel, A., Vogel, H., Pauchet, Y., Pauls, G., Kunert, G., Groot, A. T., Boland, W., Heckel, D. G., Heidel-Fischer, H. (2016). Immune modulation enables a specialist insect to benefit from antibacterial withanolides in its host plant. Nature Communications. DOI: 10.1038/NCOMMS12530

http://dx.doi.org/10.1038/NCOMMS12530

Further Information:

Hanna Heidel-Fischer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, 49-3641-57-1516, hfischer@ice.mpg.de

Contact and Media Requests:

Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, 49-3641-57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2016.html

Max Planck Institute for Chemical Ecology

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.