Researchers find a new way to identify and target malignant aging in leukemia

August 26, 2016

Researchers at University of California San Diego School of Medicine and Moores Cancer Center have identified RNA-based biomarkers that distinguish between normal, aging hematopoietic stem cells and leukemia stem cells associated with secondary acute myeloid leukemia (sAML), a particularly problematic disease that typically afflicts older patients who have often already experienced a bout with cancer.

The findings, published online August 25 in Cell Stem Cell, suggest a new way to predict leukemic relapse early and to identify potential targets for new drug development.

Secondary AML typically follows a chronic pre-malignant disease or treatment for other cancers. Consequently, patients tend to be diagnosed later in life, usually after the age of 60.

"Because of relatively low survival rates and their advancing age, these patients tend to be poor candidates for aggressive therapies, like a bone marrow transplant," said senior author Catriona Jamieson, MD, PhD, professor of medicine, chief of the Division of Regenerative Medicine at UC San Diego School of Medicine and director of the Stem Cell Research Program at Moores Cancer Center. "There is a pressing need for more effective treatments that prevent disease progression and relapse."

Aging is a key risk factor for sAML because, over time, hematopoietic stem cells (which give rise to all other blood cell types) accumulate DNA mutations and changes in other molecules that put DNA instructions into action, such as RNA and proteins.

Jamieson's team wanted to understand how RNA might change with the aging of normal blood stem cells compared with sAML stem cells. "By being able to distinguish benign from malignant aging based on distinctive RNA splicing patterns, we can develop therapeutic strategies that selectively target leukemia stem cells while sparing normal hematopoietic stem cells," she said.

Leslie Crews, PhD, assistant project scientist in Jamieson's lab and co-first author with Larisa Balaian, PhD, project scientist, said the team "specifically looked at a process called RNA splicing, which is responsible for removing pieces of extraneous RNA that do not contain instructions to make protein. If disrupted, RNA splicing could enhance the capacity of cells to propagate cancer."

Using sensitive genetic sequencing technology, the scientists identified unique RNA splicing variants that distinguish normal, aging stem cells from abnormal, malignant ones. "These splicing signatures could potentially be used as clinical biomarkers to detect blood stem cells that show signs of early aging or leukemia, and to monitor patient responses to treatment," said Crews.

Current AML therapies fail to eliminate dormant leukemia stem cells responsible for disease relapse. "Our findings show that RNA splicing is a unique therapeutic vulnerability for secondary AML," said Jamieson. "RNA-splicing-targeted therapies may be a potent and selective way to clear leukemia stem cells and prevent relapse."

The researchers also tested a small molecule splicing modulator compound derived from a natural product and developed in the lab of Michael Burkart, PhD, professor in the Department of Chemistry and Biochemistry at UC San Diego.

In patient-derived animal models, they found that just three doses of the compound, called 17S-FD-895, significantly reduced the ability of leukemia stem cells to self-renew. The authors say it's the first study to show RNA splicing modulators inhibit cancer stem cell activity.

"While genetic and proteomic tools can address the mechanisms of splicing at a global level, small molecule modulators allow the selective examination of splicing mechanism," said Burkart. "This work was enabled by our ability to prepare stable analogs of natural products that modulate the spliceosome and represents more than 10 years of effort into synthetic and medicinal chemistry.

"We are optimistic that these findings will support our long term goal of delivering a clinical candidate to combat blood-borne cancer. Furthermore, we see these materials as important probes to dissect the complex yet important mechanics of disease related splicing events.

Crews noted that RNA splicing-targeted agents have been shown to have activity in a variety of solid tumors so the findings may be relevant to a variety of cancers, such as breast and drug-resistant melanoma.
-end-
Co-authors include: Nathaniel P. Delos Santos, Heather S. Leu, Angela C. Court, Elisa Lazzari, Anil Sadarangani, Maria A. Zipeto, James J. La Clair, Reymundo Villa, Anna Kulidjian, Sheldon Morris, and Edward D. Ball, all at UC San Diego; and Ranier Storb, Fred Hutchinson Cancer Research Center and University of Washington.

University of California - San Diego

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.