Nav: Home

Waterloo chemists develop promising cheap, sustainable battery for grid energy storage

August 26, 2016

Chemists at the University of Waterloo have developed a long-lasting zinc-ion battery that costs half the price of current lithium-ion batteries and could help enable communities to shift away from traditional power plants and into renewable solar and wind energy production.

Professor Linda Nazar and her colleagues from the Faculty of Science at Waterloo made the important discovery, which appears in the journal, Nature Energy.

The battery uses safe, non-flammable, non-toxic materials and a pH-neutral, water-based salt. It consists of a water-based electrolyte, a pillared vanadium oxide positive electrode and an inexpensive metallic zinc negative electrode. The battery generates electricity through a reversible process called intercalation, where positively-charged zinc ions are oxidized from the zinc metal negative electrode, travel through the electrolyte and insert between the layers of vanadium oxide nanosheets in the positive electrode. This drives the flow of electrons in the external circuit, creating an electrical current. The reverse process occurs on charge.

The cell represents the first demonstration of zinc ion intercalation in a solid state material that satisfies four vital criteria: high reversibility, rate and capacity and no zinc dendrite formation. It provides more than 1,000 cycles with 80 per cent capacity retention and an estimated energy density of 450 watt-hours per litre. Lithium-ion batteries also operate by intercalation--of lithium ions--but they typically use expensive, flammable, organic electrolytes.

"The worldwide demand for sustainable energy has triggered a search for a reliable, low-cost way to store it," said Nazar, a Canada Research Chair in Solid State Energy Materials and a University Research Professor in the Department of Chemistry. "The aqueous zinc-ion battery we've developed is ideal for this type of application because it's relatively inexpensive and it's inherently safe."

The global market for energy storage is expected to grow to $25 billion in the next 10 years. The bonus for manufacturers is they can produce this zinc battery at low cost because its fabrication does not require special conditions, such as ultra-low humidity or the handling of flammable materials needed for lithium ion batteries.

"The focus used to be on minimizing size and weight for the portable electronics market and cars," said Dipan Kundu, a postdoctoral fellow in Nazar's lab and the paper's first author. "Grid storage needs a different kind of battery and that's given us license to look into different materials."

Water in the electrolyte not only facilitates the movement of zinc ions, it also swells the space between the sheets, like tiers of a wedding cake, giving the zinc just enough room to enter and leave the positive structure as the battery cycles. The electrode material's nano-scale dimensions and the battery's high-conductivity aqueous electrolyte also improve its cycling life and response times.

Together with researchers at the Joint Center for Energy Storage Research in the U.S., Nazar's team is also investigating multivalent ion intercalation batteries based on Mg2+ in non-aqueous electrolytes. They were the first to report highly reversible Mg cycling in the TiS2 thiospinel and layered sulfides, which represent the first new highly functional Mg insertion materials reported in more than 15 years. Their papers appeared in Energy & Environmental Science and ACS Energy Letters earlier this year.
-end-


University of Waterloo

Related Zinc Articles:

A nanoscale laser made of gold and zinc oxide
Tiny particles composed of metals and semiconductors could serve as light sources in components of future optical computers, as they are able to precisely localize and extremely amplify incident laser light.
Zinc lozenges did not shorten the duration of colds
Administration of zinc acetate lozenges to common cold patients did not shorten colds in a randomized trial published in BMJ Open.
Dietary zinc protects against Streptococcus pneumoniae infection
Researchers have uncovered a crucial link between dietary zinc intake and protection against Streptococcus pneumoniae, the primary bacterial cause of pneumonia.
Zinc could help as non-antibiotic treatment for UTIs
New details about the role of zinc in our immune system could help the development of new non-antibiotic treatment strategies for bacterial diseases, such as urinary tract infections (UTIs).
Zinc deficiency may play a role in high blood pressure
Lower-than-normal zinc levels may contribute to high blood pressure (hypertension) by altering the way the kidneys handle sodium.
Genetic polymorphisms and zinc status
Zinc is an essential component for all living organisms, representing the second most abundant trace element, after iron.
Autism is associated with zinc deficiency in early development -- now a study links the two
Autism has been associated with zinc deficiency in infancy. While it is not yet known whether zinc deficiency in early development causes autism, scientists have now found a mechanistic link.
Can chocolate, tea, coffee and zinc help make you more healthy?
Ageing and a low life expectancy are caused, at least partly, by oxidative stress.
Zinc oxide nanoparticles: Therapeutic benefits and toxicological hazards
Despite the widespread application of zinc oxide nanoparticles in biomedicine, their use is still a controversial issue.
Preconception zinc deficiency could spell bad news for fertility
The availability of micronutrients in the ovarian environment and their influence on the development, viability and quality of egg cells is the focus of a growing area of research.
More Zinc News and Zinc Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.