Nav: Home

Flame retardants -- from plants

August 26, 2019

SAN DIEGO, Aug. 26, 2019 -- Flame retardants are present in thousands of everyday items, from clothing to furniture to electronics. Although these substances can help prevent fire-related injuries and deaths, they could have harmful effects on human health and the environment. Of particular concern are those known as organohalogens, which are derived from petroleum. Today, scientists report potentially less toxic, biodegradable flame retardants from an unlikely source: plants.

The researchers will present their results at the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition. ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 9,500 presentations on a wide range of science topics.

"The best flame-retardant chemicals have been organohalogen compounds, particularly brominated aromatics," says Bob Howell, Ph.D., the project's principal investigator. "The problem is, when you throw items away, and they go into a landfill, these substances can leach into the environment."

Most organohalogen flame retardants are very stable. Microorganisms in the soil or water can't degrade them, so they persist for many years in the environment, working their way up the food chain. In addition, some of the compounds can migrate out of items to which they are added, such as electronics, and enter household dust. Although the health effects of ingesting or breathing organohalogen flame retardants are largely unknown, some studies suggest they could be harmful, prompting California to ban the substances in children's products, mattresses and upholstered furniture in 2018.

"A number of flame retardants are no longer available because of toxicity concerns, so there is a real need to find new materials that, one, are nontoxic and don't persist, and two, don't rely upon petroleum," Howell says. His solution was to identify compounds from plants that could easily be converted into flame retardants by adding phosphorous atoms, which are known to quench flames. "We're making compounds that are based on renewable biosources," he says. "Very often they are nontoxic; some are even food ingredients. And they're biodegradable -- organisms are accustomed to digesting them."

To make their plant-derived compounds, Howell and colleagues at the Center for Applications in Polymer Science at Central Michigan University began with two substances: gallic acid, commonly found in fruits, nuts and leaves; and 3,5-dihydroxybenzoic acid from buckwheat. Using a fairly simple chemical reaction, the researchers converted hydroxyl groups on these compounds to flame-retardant phosphorous esters. Then, the team added the various phosphorous esters individually to samples of an epoxy resin, a polymer often used in electronics, automobiles and aircraft, and examined the different esters' properties with several tests.

In one of these tests, the researchers showed that the new flame retardants could strongly reduce the peak heat release rate of the epoxy resin, which reflects the intensity of the flame and how quickly it is going to spread. The plant-derived substances performed as well as many organohalogen flame retardants on the market. "As a matter of fact, they may be better," Howell says. "Because gallic acid has three hydroxyl groups within the same molecule that can be converted to phosphorous esters, you don't have to use as much of the additive, which reduces cost."

The researchers also studied how the new compounds quench flames, finding that the level of oxygenation at the phosphorous atom determined the mode of action. Compounds with a high level of oxygenation (phosphates) decomposed to a substance that promoted char formation on the polymer surface, starving the flame of fuel. In contrast, compounds with a low level of oxygenation (phosphonates) decomposed to species that scavenged combustion-promoting radicals.

Howell's team hasn't yet performed toxicity tests, but he says that other groups have done such studies on similar compounds. "In general, phosphorous compounds are much less harmful than the corresponding organohalogens," he notes. In addition, the plant-derived substances are not as volatile and are less likely to migrate from items into household dust. Howell hopes that the new flame retardants will attract the attention of a company that could help bring them to market, he says.
-end-
A press conference on this topic will be held Monday, Aug. 26, at 9:30 a.m. Pacific time in the San Diego Convention Center. Reporters may check-in at the press center, Room 14B, Mezzanine Level, or watch live on Youtube http://bit.ly/acs2019sandiego. To ask questions online, sign in with a Google account.

The researchers acknowledge support and funding from Central Michigan University.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

Follow us on Twitter | Facebook

Title
Phosphorus flame retardants from crop plant phenolic acids

Abstract
While polymeric materials have had an enormously positive impact on the development of modern society, for most applications they must be flame-retarded. This may be accomplished in a variety of ways, most notably by introduction of a suitable additive during processing. Traditionally, organohalogen compounds, particularly brominated aromatics, have been effective, affordable, popular gas-phase flame retardants. However, these compounds readily migrate from a polymer matrix into which they have been incorporated, persist in the environment, tend to bioaccumulate and may pose risks to human health. For this reason, the use of these compounds is coming under increasing regulatory pressure worldwide. Phosphorus compounds derived from renewable biosources provide attractive alternatives to these traditional organohalogen flame retardants. Precursors to biobased organophosphorus flame retardants are generally nontoxic and readily available at modest cost. Phenolics are ubiquitous in nature and may be isolated from numerous plants. Gallic acid (3,4,5-trihydroxybenzoic acid) is a constituent many edible plants, nuts and legumes. 3,5-Dihydroxybenzoic acid may be found in several plants, principally buckwheat. Both of these compounds may serve as the base for the generation of a series of phosphorus esters, both phosphonate and phosphate, that display good flame retardancy in DGEBA epoxy.

American Chemical Society

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.