Nav: Home

How the herring adapted to the light environment in the Baltic Sea

August 26, 2019

The evolutionary process that occurs when a species colonizes a new environment provides an opportunity to explore the mechanisms underlying genetic adaptation, which is essential knowledge for understanding evolution and the maintenance of biodiversity. An international team of scientists, led by researchers from Uppsala University, Uppsala, Sweden, reports that a single amino acid change in the light-sensing rhodopsin protein played a critical role when herring adapted to the red-shifted light environment in the Baltic Sea. Remarkably about one third of all fish living in brackish or freshwater carry the same change. The study is published today in PNAS.

"The Atlantic and Baltic herring are excellent models for evolutionary studies for two reasons", explains Dr. Leif Andersson from Uppsala University and Texas A&M University who led the study. "Firstly, their enormous population sizes allow us to study the effects of natural selection without the disturbing stochastic changes in the frequency of gene variants that happens in small populations. Secondly, the colonization of the brackish Baltic Sea by herring within the last 10,000 years (following the most recent glaciation) provides an opportunity to study what happens when a species adapts to a new environment."

"We have examined the entire genome in many populations of Atlantic and Baltic herring and find that a single amino acid change in the protein rhodopsin, in which phenylalanine has been replaced by tyrosine, played a critical role during the adaptation to the Baltic Sea," says Jason Hill, scientist at Uppsala University in Uppsala, Sweden, and first author on the paper. This makes a lot of sense since rhodopsin is a light-sensitive receptor in the retina and satellite data show that the Baltic Sea has a red-shifted light environment compared with the Atlantic Ocean, because dissolved organic material absorbs blue light.

"A careful genetic analysis of our data shows that the evolutionary process must have been very rapid. We estimate that the rhodopsin gene variant found in Baltic herring increased in frequency to become the most common variant within only a few hundred years," says scientist Mats Pettersson at Uppsala University.

The amino acids phenylalanine and tyrosine are structurally very similar and only differs by the presence of a hydroxyl (-OH) moiety in tyrosine, so could this change really be so important?

"In fact, the crystal structure of rhodopsin shows that residue 261 is located in the vicinity of the chromophore retinal where light absorption occurs. The presence of tyrosine in Baltic herring rhodopsin makes light absorption red-shifted by about 10 nanometer and can thereby catch more photons in the red-shifted light environment in the Baltic Sea," says Dr. Patrick Scheerer at Charité - Universitätsmedizin Berlin, in Berlin, Germany, and one of the co-authors of the study.

When the scientists analysed the rhodopsin sequence from more than 2,000 fish they found that about one third of all species occurring in brackish or freshwater carry exactly the same genetic change as the Baltic herring whereas nearly all fish living in marine waters have a rhodopsin gene variant with phenylalanine like the Atlantic herring. "It is remarkable that we find the same mutation occur independently and at least 20 times across thousands of fish species, this provides a really striking example of convergent evolution at the molecular level," says Erik Enbody, co-author and post-doctoral fellow at Uppsala University.

"Our hypothesis is that this change in rhodopsin is particularly important during the juvenile stage and that the Baltic herring variant allows fish larvae to better utilise the light environment in the Baltic Sea when searching for food or avoiding predators", explains Leif Andersson. This hypothesis is supported by their finding that both Atlantic salmon and brown trout that always spawn in freshwater but may live most of their life in marine water have tyrosine 261 in rhodopsin like a freshwater fish. In contrast, the European and Japanese eel which both are born in marine waters but live most of their adult lives in freshwater carry phenylalanine 261 like the great majority of marine fish.
-end-
Jason Hill et al. (2019) "Recurrent convergent evolution at amino acid residue 261 in fish rhodopsin," 2019-08332, in PNAS Latest Articles, http://www.pnas.org/cgi/doi/10.1073/pnas.1908332116

For more information contact:

Professor Leif Andersson, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala in Sweden, and Texas A&M University, USA. phone: +46-18-471 4904, +46-70-425 0233, e-mail: leif.andersson@imbim.uu.se

Uppsala University

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
More Science News and Science Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...