Metal particles abraded from tattooing needles travel inside the body

August 26, 2019

Allergic reactions are common side effects of tattoos and pigments have been blamed for this. Now researchers prove, for the first time, that particles wear from the needle during the tattooing process and contain the allergens nickel and chromium and therefore could also induce allergies.

The number of tattooed people has increased substantially in recent years, with some countries revealing to have up to 24% of the population with a tattoo. Adverse reactions from tattoos are common and until now, researchers believed only inks were to blame. "There is more to tattoos than meet the eye. It is not only about the cleanliness of the parlour, the sterilization of the equipment or even about the pigments. Now we find that the needle wear also has an impact in your body", explains Hiram Castillo, one of the authors of the study and scientist at the ESRF.

Today, in a new study published in the journal Particle and Fibre Toxicology, scientists have shown that, surprisingly, chromium and nickel particles coming from tattoo needle wear are distributed towards the lymph nodes. Usually tattoo needles contain nickel (6-8%) and chromium (15-20%) both of which prompt a high rate of sensitization in the general population and may therefore play a role in tattoo allergies. Two years ago, the same team of researchers found that the pigments and their metal impurities are transported to the lymph nodes in a nanoform, where they can be found years after the placement of the tattoos.

Ines Schreiver, corresponding author of the research and scientist at the Federal Institute for Risk Assessment in Germany, explains how their detective work led them to the needles. "We were following up on our previous study, by trying to find the link between iron, chromium and nickel and the colouring of the inks. After studying several human tissue samples and finding metallic components, we realized that there must be something else. We also tested around 50 ink samples without finding such metal particles and made sure that we hadn't contaminated the samples during sample preparation. Then we thought of testing the needle and that was our 'eureka' moment".

The team, led by researchers at the Federal Institute for Risk Assessment in Germany, included scientists from the European Synchrotron (ESRF), Grenoble, (France), Xploraytion GmbH, Physikalisch-Technische Bundesanstalt, Technical University Berlin, Helmut Fischer GmbH, Ludwig-Maximilians University, (Germany), the University of Regensburg, a dermatologist from Belgium and CNRS/Sorbonne Université (France). They came to the ESRF - one of the world's most intense X-ray sources - to carry out the analysis of the samples using synchrotron nano-X-ray fluorescence and nano- X-ray absorption near-edge structure on beamlines ID21 and ID16B. The results showed that when the tattoo ink contains titanium dioxide (a white pigment often mixed in bright colours such as green, blue and red), it abrades the needle. This does not happen when using carbon black ink. The team also studied a needle before and after the tattoo process using scanning electron microscopy, which showed the abrasion it had undergone. "It is beyond doubt that the metal particles derive from the tattoo needle as result of pure mechanical grinding", says Bernhard Hesse, of Xploraytion and visiting scientist at the ESRF. It is known that titanium dioxide is very abrasive due to its high density and hardness compared to carbon black.

The size of the particles found in the lymph nodes after being translocated from the tattoos range from 50 nanometres to 2 micrometre. Nanoparticles are more dangerous than micro-sized particles due to their increased surface-to-volume ratio, which consequently leads to a potentially higher release of toxic elements. Nanoparticles can also directly enter cells and are more easily distributed in the body. On a positive note, however, they may also be more readily excreted from the body.

The study provides the first proof that, not only tattoo pigments, but also abraded needle particles are distributed towards the lymph nodes. However, further investigations need to be carried out to clearly assess impact on tattoo allergy formation and systemic sensitization. "The fact that all pigments and wear particles are deposited in lymph nodes calls for special attention to be placed on allergy development. Unfortunately, today, we can't determine the exact impact on human health and possible allergy development deriving from the tattoo needle wear", explains Schreiver. "These are long-term effects which can only be assessed in long-term epidemiological studies that monitor the health of thousands of people over decades", she concludes.
Scientists contacts:

Ines Schreiver, corresponding author, scientist at the Federal Institute for Risk Assessment, Berlin, Germany
(English, German) - Phone: +49 30 18412 27 800
Mobile: +49 17634629207

Hiram Castillo, ESRF scientist
(English, Spanish, French) - +33 661459749

Press contact:

Delphine CHENEVIER, Head of communications, ESRF - +33 607161879

European Synchrotron Radiation Facility

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to