Nav: Home

Natural radiation can interfere with quantum computers

August 26, 2020

RICHLAND, Wash.--A multidisciplinary research team has shown that radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits. The discovery, reported today in the journal Nature, has implications for the construction and operation of quantum computers, an advanced form of computing that has attracted billions of dollars in public and private investment globally.

The collaboration between teams at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) and the Massachusetts Institute of Technology (MIT), helps explain a mysterious source of interference limiting qubit performance.

"Our study is the first to show clearly that low-level ionizing radiation in the environment degrades the performance of superconducting qubits," said John Orrell, a PNNL research physicist, senior author of the study and expert in low-level radiation measurement. "These findings suggest that radiation shielding will be necessary to attain long-sought performance in quantum computers of this design."

Natural radiation wreaks havoc with computers

Computer engineers have known for at least a decade that natural radiation emanating from materials like concrete and pulsing through our atmosphere in the form of cosmic rays can cause digital computers to malfunction. But digital computers aren't nearly as sensitive as a quantum computer.

"We found that practical quantum computing with these devices will not be possible unless we address the radiation issue," said PNNL physicist Brent VanDevender, a co-investigator on the study.

The researchers teamed up to solve a puzzle that has been vexing efforts to keep superconducting quantum computers working for long enough to make them reliable and practical. A working quantum computer would be thousands of times faster than even the fastest supercomputer operating today. And it would be able to tackle computing challenges that today's digital computers are ill-equipped to take on. But the immediate challenge is to have the qubits maintain their state, a feat called "coherence," said Orrell. This desirable quantum state is what gives quantum computers their power.

MIT physicist Will Oliver was working with superconducting qubits and became perplexed at a source of interference that helped push the qubits out of their prepared state, leading to "decoherence," and making them non-functional. After ruling out a number of different possibilities, he considered the idea that natural radiation from sources like metals found in the soil and cosmic radiation from space might be pushing the qubits into decoherence.

A chance conversation between Oliver, VanDevender, and his long-time collaborator, MIT physicist Joe Formaggio, led to the current project.

[Listen to the story behind the science on Pods of Science]

It's only natural

To test the idea, the research team measured the performance of prototype superconducting qubits in two different experiments:
  • They exposed the qubits to elevated radiation from copper metal activated in a reactor.
  • They built a shield around the qubits that lowered the amount of natural radiation in their environment.

The pair of experiments clearly demonstrated the inverse relationship between radiation levels and length of time qubits remain in a coherent state.

"The radiation breaks apart matched pairs of electrons that typically carry electric current without resistance in a superconductor," said VanDevender. "The resistance of those unpaired electrons destroys the delicately prepared state of a qubit."

The findings have immediate implications for qubit design and construction, the researchers concluded. For example, the materials used to construct quantum computers should exclude material that emits radiation, the researchers said. In addition, it may be necessary to shield experimental quantum computers from radiation in the atmosphere.

At PNNL, interest has turned to whether the Shallow Underground Laboratory, which reduces surface radiation exposure by 99%, could serve future quantum computer development. Indeed, a recent study by a European research team corroborates the improvement in qubit coherence when experiments are conducted underground.

"Without mitigation, radiation will limit the coherence time of superconducting qubits to a few milliseconds, which is insufficient for practical quantum computing," said VanDevender.

The researchers emphasize that factors other than radiation exposure are bigger impediments to qubit stability for the moment. Things like microscopic defects or impurities in the materials used to construct qubits are thought to be primarily responsible for the current performance limit of about one-tenth of a millisecond. But once those limitations are overcome, radiation begins to assert itself as a limit and will eventually become a problem without adequate natural radiation shielding strategies, the researchers said.

Findings affect global search for dark matter

In addition to helping explain a source of qubit instability, the research findings may also have implications for the global search for dark matter, which is thought to comprise just under 85% of the known universe, but which has so far escaped human detection with existing instruments. One approach to signals involves using research that depends on superconducting detectors of similar design to qubits. Dark matter detectors also need to be shielded from external sources of radiation, because radiation can trigger false recordings that obscure the desirable dark matter signals.

"Improving our understanding of this process may lead to improved designs for these superconducting sensors and lead to more sensitive dark matter searches," said Ben Loer, a PNNL research physicist who is working both in dark matter detection and radiation effects on superconducting qubits. "We may also be able to use our experience with these particle physics sensors to improve future superconducting qubit designs."
The study was supported by the U.S. Department of Energy, Office of Science, the U.S. Army Research Office, the ARO Multi-University Research Initiative, the National Science Foundation and the MIT Lincoln Laboratory.

Pacific Northwest National Laboratory draws on signature capabilities in chemistry, Earth sciences, and data analytics to advance scientific discovery and create solutions to the nation's toughest challenges in energy resiliency and national security. Founded in 1965, PNNL is operated by Battelle for the U.S. Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit PNNL's News Center. Follow us on Facebook, Instagram, LinkedIn and Twitter.

DOE/Pacific Northwest National Laboratory

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.