Nav: Home

Army scientists take new spin on quantum research

August 26, 2020

Army researchers discovered a way to further enhance quantum systems to provide Soldiers with more reliable and secure capabilities on the battlefield.

Specifically, this research informs how future quantum networks will be designed to deal with the effects of noise and decoherence, or the loss of information from a quantum system in the environment.

As one of the U.S. Army's priority research areas in its Modernization Strategy, quantum research will help transform the service into a multi-domain force by 2035 and deliver on its enduring responsibility as part of the joint force providing for the defense of the United States.

"Quantum networking, and quantum information science as a whole, will potentially lead to unsurpassed capabilities in computation, communication and sensing," said Dr. Brian Kirby, researcher at the U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "Example applications of Army interest include secure secret sharing, distributed network sensing and efficient decision making."

This research effort considers how dispersion, a very common effect found in optical systems, impacts quantum states of three or more particles of light.

Dispersion is an effect where a pulse of light spreads out in time as it is transmitted through a medium, such as a fiber optic. This effect can destroy time correlations in communication systems, which can result in reduced data rates or the introduction of errors.

To understand this, Kirby said, consider the situation where two light pulses are created simultaneously and the goal is to send them to two different detectors so that they arrive at the same time. If each light pulse goes through a different dispersive media, such as two different fiber optic paths, then each pulse will be spread in time, ultimately making the arrival time of the pulses less correlated.

"Amazingly, it was shown that the situation is different in quantum mechanics," Kirby said. "In quantum mechanics, it is possible to describe the behavior of individual particles of light, called photons. Here, it was shown by research team member Professor James Franson from the University of Maryland, Baltimore County, that quantum mechanics allows for certain situations where the dispersion on each photon can actually cancel out so that the arrival times remain correlated."

The key to this is something called entanglement, a strong correlation between quantum systems, which is not possible in classical physics, Kirby said.

In this new work, Nonlocal Dispersion Cancellation for Three or More Photons, published in the peer-reviewed Physical Review A, the researchers extend the analysis to systems of three or more entangled photons and identify in what scenarios quantum systems outperform classical ones. This is unique from similar research as it considers the effects of noise on entangled systems beyond two-qubits, which is where the primary focus has been.

"This informs how future quantum networks will be designed to deal with the effects of noise and decoherence, in this case, dispersion specifically," Kirby said.

Additionally, based on the success of Franson's initial work on systems of two-photons, it was reasonable to assume that dispersion on one part of a quantum system could always be cancelled out with the proper application of dispersion on another part of the system.

"Our work clarifies that perfect compensation is not, in general, possible when you move to entangled systems of three or more photons," Kirby said. "Therefore, dispersion mitigation in future quantum networks may need to take place in each communication channel independently."

Further, Kirby said, this work is valuable for quantum communications because it allows for increased data rates.

"Precise timing is required to correlate detection events at different nodes of a network," Kirby said. "Conventionally the reduction in time correlations between quantum systems due to dispersion would necessitate the use of larger timing windows between transmissions to avoid confusing sequential signals."

Since Kirby and his colleagues' new work describes how to limit the uncertainty in joint detection times of networks, it will allow subsequent transmissions in quicker succession.

The next step for this research is to determine if these results can be readily verified in an experimental setting.
-end-


U.S. Army Research Laboratory

Related Quantum Mechanics Articles:

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.
Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.
Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.
A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.
Fluid mechanics mystery solved
An environmental engineering professor has solved a decades-old mystery regarding the behavior of fluids, a field of study with widespread medical, industrial and environmental applications.
Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.
Understanding mechanics and materials though evolution and biomaterials
Studying the evolution of bodily processes millions of years ago as well as the properties of today's biomaterials could improve soft robotics design and inform materials science research.
USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.
A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.
What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
More Quantum Mechanics News and Quantum Mechanics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.